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Abstract

The effect of signal quality on the accuracy of cardiac output (CO) estimation from
arterial blood pressure (ABP) was evaluated using data from the MIMIC II database.
Thermodilution CO (TCO) was the gold standard, and a total of 121 records with
1,497 TCO measurements were used. Six lumped-parameter and systolic area CO
estimators were tested, using ABP features and a robust heart rate (HR) estimate.
Signal quality indices for ABP and HR were calculated using previously described
metrics. For retrospective analysis, results showed that the Liljestrand estimator
yielded the lowest error for all levels of signal quality and for any single estimator
when using five or more calibration points. Increasing signal quality decreased error
and only marginally reduced the amount of available data, as a signal quality level
of 90% preserved sufficient data for almost continuous CO estimation. At the rec-
ommended signal quality thresholds, the lowest gross root mean square normalized
error (RMSNE) was found to be 15.4% (or 0.74 L/min) and average RMSNE was
13.7% (0.71 L/min). Based on these results, a linear combination (LC) of the six CO
estimation methods was developed and proved superior to all other methods when
up to 13 TCO calibration values were used.

The clinical utility of the CO estimates were examined by correlating changes in
four vasoactive medication doses with corresponding changes in estimated resistance,
which was derived from mean ABP and estimated CO. Regression analysis failed to
show a clear correlation between dose level and estimated resistance for the Liljes-
trand and LC estimators except for neosynephrine, revealing the limitations of current
SQI methods in ensuring signal fidelity. Examples of types of non-physiological or
artifactual ABP waveforms are shown, and a potential damping detection method is
proposed.

Thesis Supervisor: Roger G. Mark
Title: Distinguished Professor in Health Sciences and Technology and Electrical En-
gineering and Computer Science
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Chapter 1

Introduction

Modern intensive care units (ICUs) measure a large number of physiologic signals that

are intended to provide clinicians comprehensive information to diagnose and treat

patients. However, the quantity of information can be overwhelming to the clinician

and hinder the integration of relevant data crucial to the patient’s condition. One of

the many signals typically measured in an ICU setting is blood pressure, which can

be processed and interpreted to aid clinicians in better tracking of the patient’s state.

1.1 Cardiovascular System Background

The major functions of the cardiovascular system are to perfuse the vital organs with

blood, provide oxygen to tissues, and distribute essential molecules to the cells while

carrying away metabolic waste products to maintain the body’s internal environment.

As illustrated in Fig.1-1, blood is carried from the heart to the body through the

arteries, thick-walled vessels that carry the blood at high pressures. The arteries

branch into a series of arterioles, which then in turn branch into capillaries. These

capillaries, with their walls only a single layer of cells thick, are the site of exchange

of oxygen, carbon dioxide, nutrients, and wastes to and from the tissues. Blood is

carried back to the heart through the veins, thin-walled vessels that carry the blood

at low pressures. After the blood returns to the right atrium of the heart, it passes

into the right ventricle, from which it is ejected into the pulmonary system for gas
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exchange. Oxygenated blood returns to the heart and fills the left atrium. Blood then

fills the left ventricle, and the left ventricle pumps the blood through the systemic

circulation system.

Cardiac output (CO) is a measure of the amount of blood pumped by either

ventricle. In steady state, the outputs of both ventricles are the same. In a healthy

adult male, cardiac output is approximately 5 L/min [7]. Cardiac output can vary,

however, according to the body’s physiological needs; for example, a well-trained

athlete, while exercising, can increase cardiac output to up to 30 L/min to increase

the rate of transport of oxygen, nutrients, and wastes [13]. Abnormally low levels of

cardiac output can also be an indication of pathology.

1.2 Motivation for Cardiac Output Estimation

Cardiac output is one of the most important hemodynamic signals to measure in

patients with compromised cardiovascular performance. Fig.1-2 illustrates the sig-

nificance of cardiac output monitoring in severe acute hemorrhage, displaying the

changes in total peripheral resistance, heart rate, arterial blood pressure, right atrial

pressure, and cardiac output during a hemorrhage. Although arterial blood pressure

decreases throughout blood loss and drops sharply at approximately 10 minutes after

onset of hemorrhage, cardiac filling pressure and cardiac output provide earlier indi-

cations of anomalous cardiovascular behavior. This example illustrates the fact that

measurements of cardiac output and filling pressure provide information for “early

diagnosis, monitoring of disease progression, and titration of therapy in heart fail-

ure, shock of any type, sepsis, and during cardiac surgery” [15]. If cardiac output

could be measured at more frequent intervals, or even continuously, clinicians could

detect abnormalities in the cardiovascular system and execute appropriate interven-

tions sooner.

Currently, cardiac output monitoring in the ICU is monitored invasively and only

intermittently. In the ICU, the thermodilution cardiac output (TCO) method, in-

troduced by Fegler in 1954 [12], has been the “gold standard” commonly used to
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Figure 1-1: Cardiovascular system. Xs indicate local control points. The arterial
system is displayed on the right, while the venous system is displayed on the left.
Adapted from [29].
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Figure 1-2: Example of severe acute hemorrhage starting at t=0. TPR, total periph-
eral resistance; HR, heart rate; BP, blood pressure; RAP, right atrial pressure; CO,
cardiac output; RT, right. Adapted from [3].
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Figure 1-3: Typical thermodilution curve. Baseline fluctuations may reach 0.1 degrees
Celsius. Adapted from [31].

measure cardiac output, whereby a bolus of cold solution of saline or dextrose is

injected into the right atrium. Temperature change is monitored at the pulmonary

artery using a balloon-tipped Swan-Ganz catheter, which involves an invasive proce-

dure that requires threading the catheter through the vena cava and the right heart.

Using this method, cardiac output is inversely proportional to the integral of the

measured temperature curve, as illustrated in Fig.1-3. This method can only be per-

formed in well-equipped environments such as ICUs or cardiac catheterization labs.

Current invasive procedures for monitoring cardiac output increase the potential for

complications, including the higher risk of infection and sepsis, and increase the pos-

sibilities of morbidity and mortality [6]. Furthermore, TCO measurements can only

be taken intermittently to prevent volume overload and to allow for sufficient time

for temperature changes to occur in the bloodstream [20]. Therefore, both patients

and clinicians would benefit from having a continuous, non-invasive, reliable method

of estimating CO.

Other methods of measuring CO exist, but requires additional measurements,

tests, and/or equipment. The Fick method derives CO through calculating oxygen

consumed over a given period of time by measuring oxygen consumption per minute

with a spirometer, oxygen concentration of venous blood from the pulmonary artery,

and oxygen concentration of arterial blood from a peripheral artery. Impedance car-

diography is a non-invasive method of measuring CO, whereby electrodes are placed
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on the neck and chest to transmit and detect impedance changes in the thorax.

Impedance changes are due to changes in intrathoracic fluid volume and respiration,

so changes in blood volume per cardiac cycle can be measured and used to estimate

stroke volume and CO, but reliability and reproducibility of measurements have been

limited [42]. The Doppler ultrasound method uses reflected sound waves to calculate

flow velocity and volume to obtain cardiac output and is a non-invasive, accurate way

of measuring CO using a handheld transducer placed over the skin.

The precision for thermodilution measurements is approximately ±10−20% (0.5-1

L/min for a standard 5L/min cardiac output) with a 95% confidence interval [27, 36].

Studies have shown that measuring cardiac output using thermodilution has little

bias compared to existing methods such as the Fick method, but other studies show

TCO can also overestimate cardiac output by as much as 2.3 L/min [22, 17, 11].

Furthermore, a variety of factors contribute to error in cardiac output estimation

by thermodilution: temperature and volume of injectate, rewarming of injectate,

timing of injection and respiration, speed and mode of injection, and intravenous

fluid administration, among others [31].

Cardiac output is determined by a variety of factors, including heart rate, stroke

volume, venous compliance, total peripheral resistance, blood volume, intrathoracic

pressure, and cardiac compliance. Many have developed non-invasive or minimally

invasive methods to continuously estimate CO [8, 19]. In particular, the arterial

blood pressure (ABP) waveform has generated much interest and research for its

use in estimating cardiac output. Not only is ABP a routinely measured signal in

ICU settings, but measurements are often continuous and less invasive, providing a

source of data for continuous CO estimation. Even if CO estimates from ABP are

less accurate than existing methods, the derived CO trends can be a powerful tool

for clinicians; for example, decreasing CO may indicate shock, and the effectiveness

of therapies can be monitored by examining whether or not CO increases to normal

levels. Most importantly, CO estimation using ABP requires little to no additional

equipment or personnel if the computational power of the existing bedside monitor

is sufficient for the numerical calculations required.
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1.3 Arterial Blood Pressure

Arterial blood pressure is regulated by cardiovascular control mechanisms and re-

flects the cardiovascular system function. Fig.1-4 illustrates the pressure changes in

a typical cardiac cycle during which the heart fills and ejects blood, along with the

associated aortic flow, ventricular volume, heart sounds, venous pulse, and electro-

cardiogram. The cardiac cycle can be separated into diastolic and systolic phases.

During diastole, the ventricles relax and fill with blood, and this phase is approxi-

mately two-thirds of the cardiac cycle. During systole, the ventricles contract and

pump blood to the pulmonary and systemic systems, creating high pressures in the

blood vessels. Diastolic and systolic arterial blood pressures are indicated in Fig.1-5

by Pd and Ps, respectively. The pulse pressure Pp is the difference between the systolic

and diastolic pressures. Mean pressure Pm is the time-averaged arterial blood pres-

sure through one cardiac cycle and is approximately equal to the diastolic pressure

plus one-third of the pulse pressure. Typical values for systolic and diastolic pres-

sures are 120 mmHg and 80 mmHg, respectively, and blood pressure is often written

as 120/80.

In an ICU setting, ABP is frequently measured invasively using a pressure trans-

ducer connected by a catheter to an artery. The radial artery (or occasionally the

femoral artery) is used due to its ease in cannulation and the low incidence of compli-

cations [35]. Systolic and pulse pressures are higher in these large arteries than in the

aorta, while diastolic and mean pressures are slightly lower downstream. Eventually,

as the blood reaches the arterioles, capillaries, venules, and veins, pulse pressure is

absent [7]. Blood pressure can also be measured intermittently and noninvasively

using an oscillometric system. ABP fluctuates diurnally with a baseline change of

approximately 20 mmHg, with blood pressure being lower at night [2]. Since ICU

patients are managed for cardiovascular stability with drugs and are almost always

supine, ABP and heart rate are much more restricted in range than for active, healthy

subjects [21].

25



Figure 1-4: Left atrial, aortic, and left ventricular pressure measurements with asso-
ciated aortic flow, ventricular volume, heart sounds, venous pulse, and electrocardio-
gram for a complete cardiac cycle in the dog. Adapted from [29].
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Figure 1-5: Arterial blood pressure from a MIMIC II patient. Adapted from [32].

1.4 MIMIC II Database

The MIT Laboratory of Computational Physiology (LCP) currently collaborates with

Philips Healthcare and Beth Israel Deaconess Medical Center in an ongoing effort to

collect, develop, and evaluate ICU patient monitoring systems that will improve clin-

ical decision-making. As part of this collaboration, the lab has developed the Multi-

Parameter Intelligent Patient Monitoring for Intensive Care (MIMIC) II database, an

online database that contains more than 30,000 de-identified records from patients

hospitalized at the Beth Israel Deaconess Medical Center in Boston, Massachusetts

[34] [5]. More than 4,000 of these records contain physiological data including bedside

waveform and physiological trend data. Waveform data are sampled at 125 Hz with 8

or 10 bit resolution and typically include multichannel electrocardiogram traces, arte-

rial blood pressure measurements, central venous pressure waveforms, and pulmonary

artery pressure waveforms. Trend data, which are derived from the waveforms, are

collected only intermittently and are usually recorded at a rate of 1 sample/min. De-

rived trends include heart rate, mean, systolic, and diastolic arterial pressure, mean,

systolic, and diastolic pulmonary artery pressure, and cardiac output (using ther-

modilution). Currently, the public MIMIC II database includes 1710 ICU stays with
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arterial blood pressure waveform and derived measurements, totaling approximately

104,000 hours of data. The database contains 282 trend records with thermodilution

measurements, which are measured intermittently. Of these data, 265 patient records

contain both arterial blood pressure and thermodilution measurements, totaling 2754

TCO measurements.

1.5 ABP Signal Quality Index

ABP waveform data are prone to artifacts due to patient movement, sensor discon-

nections, arterial line blockage, or mechanical devices such as intra-aortic balloon

pumps. Because the accuracy of CO estimates based on analysis of ABP waveforms

is a function of the quality of the ABP waveform, a systematic method needs to be

used to remove artifacts or abnormal (non-sinus rhythm) ABP beats. Previous liter-

ature has defined signal quality indices (SQI) for both blood pressure and heart rate

based on MIMIC II data [25, 24, 37, 44]. For blood pressure signal quality, Li et al

combined two independent signal quality assessment methods, jSQI [38] and wSQI

[44] to form ABPSQI. For both signal quality metrics, beat extraction is performed

using wabp, an open-source ABP onset detection algorithm [43].

The jSQI algorithm examines each beat, extracting a series of inter- and intra-

beat features and comparing them to a set of maximum or minimum values that are

beyond the physiological range. Beats that fail any one of these criteria are flagged

as “bad”. Table 1.1 provides a list of these features and associated thresholds beyond

which a beat is considered abnormal. For each beat, systolic and diastolic pressures

are the local maximum and minimum values within the duration of the beat, while

the beat duration is the time difference between adjacent onsets. The first 4 criteria

in Table 1.1 impose bounds on the physiologic ranges of each feature. For example,

systolic pressures above 300 mmHg are flagged as abnormal. The noise level, w, is

defined as the average of all negative slopes in each beat, so high frequency noise,

which often contains large negative slopes, is detected. This method of noise detec-

tion does not identify low frequency noise such as baseline wander and is dependent
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on the sampling frequency (125 Hz for the MIMIC II database), since this is a gra-

dient calculation for each sample in a beat. The last 3 criteria in Table 1.1 examine

variations between adjacent beats.

Feature Abnormality criteria
Ps Ps > 300 mmHg
Pd Pd < 20 mmHg
Pm Pm < 30 or Pm > 200 mmHg
HR HR < 20 or HR > 200 bpm
Pp Pp < 20 mmHg
w w < -40 mmHg / 100 ms
Ps[k]− Ps[k − 1] |∆Ps| > 20 mmHg
Pd[k]− Pd[k − 1] |∆Pd| > 20 mmHg
T [k]− T [k − 1] |∆T | > 2/3 sec

Table 1.1: jSQI criteria. Pm, mean arterial pressure; Pd, diastolic arterial pressure;
Ps, systolic arterial pressure; T , beat duration; HR, instantaneous heart rate as
calculated by 60/T ; Pp, pulse pressure; w, noise: mean of negative slopes. Adapted
from [38].

jSQI is an abnormality index and produces a binary number for each beat with 0

equating to normality and 1 abnormality. Note that an abnormal rating may be due

to artifacts or pathophysiology such as an arrhythmia or balloon pump. In Fig.1-6,

for example, the abnormal regions are indicated by the two red shaded regions on the

x-axis. The final beat in the second abnormal section ending at approximately 25

seconds is labeled as abnormal even though it appears normal because jSQI compares

this beat to the previously detected beat and looks for similarities. Compared to

human annotation, jSQI has a sensitivity of 1.00 and a positive predictivity of 0.91

[38].

The wSQI algorithm extracts beat by beat features from ABP, expresses the

features using fuzzy representation, and uses a fuzzy reasoning procedure, outlined

in Fig.1-7, to produce a continuous SQI between 0 and 1, where 1 is the best signal

quality. The features used for this algorithm are systolic blood pressure, diastolic

blood pressure, mean blood pressure, maximum positive pressure slope, maximum

negative pressure slope, maximum up-slope duration (the maximum duration that

the ABP signal continues to rise), maximum duration above threshold (the maximum
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Figure 1-6: A clinical ABP waveform with jSQI designated at the bottom, flagging
regions of abnormality. Adapted from [38].

Figure 1-7: Outline of wSQI procedure. wSQI uses fuzzy logic and fuzzy reprentation
to determine a continuous signal quality index for blood pressure. t0 and t1 are the
start and end times of each blood pressure pulse. Adapted from [44].

duration that the ABP signal stays above a threshold), pulse-to-pulse interval, pulse

pressure, and ECG-ABP delay time (the interval between the QRS onset in the ECG

and the onset of the following ABP pulse). Fig.1-8 illustrates the output from this

algorithm. If an electrocardiogram (ECG) signal is available, detected ABP beat

onset times are compared to those extracted from the ECG signal and thresholded.

The wSQI algorithm has been shown to have a sensitivity of 99.8% and a positive

predictivity of 99.3% on data from the MIMIC I Database, an earlier multiparamter

ICU database. wSQI values above 0.5 correspond to good ABP signal quality [44].

To form a signal quality metric for ABP (ABPSQI), Li et al combined jSQI and

wSQI using the following method:

30



Figure 1-8: Clinical ABP and ECG waveforms with wSQI designated at the bottom.
Note that wSQI lags one beat behind waveforms. Adapted from [44].

ABPSQI =

 wSQI if jSQI = 0;

wSQI ∗ η if jSQI = 1.

where η is an arbitrary weight that was set to be 0.7.

1.6 HR Estimation and HRSQI

For the CO estimators analyzed in this thesis, blood pressure features are used to

estimate stroke volume, which is then is multiplied by heart rate to derive cardiac

output. Therefore, reliable heart rate measurements are also an integral component

for deriving reliable CO estimates.

Li et al [25] developed a method for robust heart rate estimation by fusing heart

rate estimates derived from ABP and ECG. Heart rate is extracted from multiple

ECG leads using a weighted Kalman filter to produce a robust heart rate estimate.

Meanwhile, ABP heart rate is calculated from ABP waveforms based on beat onset

times from wabp. HR estimates from both ECG and ABP are tracked with separate

Kalman filters that used SQI-weighted update sequences. A fused heart rate is derived

by weighting each HR estimate by the SQI-weighted residual errors of each Kalman

filter for each HR time series.

For each fused segment, a corresponding signal quality (HRSQI) is computed to

indicate its reliability. HRSQI is composed of 2 SQIs: ABPSQI (described in Section
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Figure 1-9: A two-lead ECG waveform and corresponding ECG SQI. ECGSQI is
derived from combining several quality indices related to beat detecton (bSQI), inter-
channel agreement (iSQI), Gassianity (kSQI), and spectral coherence (sSQI). Adapted
from [25].

1.5) and ECGSQI. ECGSQI is the signal quality of the ECG heart rate estimation

method used to derive the heart rate component from ECG. ECGSQI is formed based

on a variety of factors: the comparison of multiple beat detection algorithms on a

single lead, beat detection comparison using different ECG leads, kurtosis of the

ECG, and spectral distribution of ECG. Fig.1-9 illustrates the ECGSQI on a short

section of multi-lead ECG. An ECGSQI value between between 0 and 1 is assigned

to the corresponding HR estimates as a metric for the reliability of the ECG-derived

HR. ECGSQIs greater than 0.5 indicate a signal from which a fair estimate of HR

can be derived, with ECGSQIs greater than 0.7 generally providing an excellent HR

estimate.

The reliability of the fused HR is indicated by a composite signal quality measure

HRSQI using the following method:

HRSQI = max(ABPSQI,ECGSQI)
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1.7 Project Scope and Goals

This thesis compares and evaluates the accuracy of CO estimators that use ABP

waveform data, using thermodilution measurements of CO as the gold standard.

Trends in CO are then related to physiological changes to determine the clinical

usefulness of the estimates. The first part of this thesis evaluates and compares

the performance of 6 CO estimators on data from MIMIC II, incorporating heart

rate, blood pressure, and their corresponding signal quality indices in the estimation

process. The accuracies of CO estimates are then compared with thermodilution

measurements in the MIMIC II database. Estimated CO errors as a function of

estimated CO, heart rate, mean blood pressure, and pulse pressure are also explored.

The second part of this thesis attempts to evaluate the clinical usefulness of CO

estimates by analyzing correlations between the administration of vasoactive pressors

and the measured and calculated hemodynamics. That is, cardiac output, peripheral

resistance (R), and mean arterial blood pressure should change over time following

drug delivery. Administration of vasoconstrictors results in an increased peripheral

resistance, which is the ratio between mean ABP and cardiac output, while vasodila-

tors result in a decreased peripheral resistance. Estimated peripheral resistance (R̂)

is calculated by dividing the mean ABP by estimated CO. By examining changes in R̂

at the vicinity of a stop, start, or significant change in pressor dose, we may evaluate

the utility of these estimates in a real-world setting.
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Chapter 2

Cardiac Output Estimation

The goal of this section is to produce reliable cardiac output estimates based on blood

pressure waveform data. This requires 3 essential components:

1. Reliable ABP measurements

2. Reliable HR measurements

3. An accurate CO estimator method

The CO estimates were evaluated on records from the MIMIC II database [5] with

simulataneous ABP waveform & TCO recordings. Patients with intra-aortic balloon

pumps or fewer than 5 TCO measurements were not included in the analysis, as con-

sistent with previous literature [37] [39] to provide sufficient calibration points. These

restrictions provide 1,497 thermodilution measurements from 121 records for calibra-

tion. Thermodilution was used as the gold standard against which the estimated CO

was compared.

2.1 Cardiac Output Estimation Theory

A variety of cardiac output estimators have been developed over the past hundred

years. The estimators evaluated in this thesis rely on circuit models or pressure-

area methods to estimate stroke volume and use heart rate to obtain cardiac output.
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A superset of these cardiac output estimators have been evaluated by Sun [37] but

focused solely on the use of jSQI for a signal quality metric. The CO estimators

evaluated in this study are listed in Table 2.1. The proportionality constant reflects

arterial compliance and peripheral resistance factors that may not be calculated using

arterial blood pressure waveforms without additional calibration data. The estimators

are broken into two general groups by a horizontal line. The first set of estimators are

based on lumped-parameter models for cardiovascular circulation. The second set of

estimators are based on systolic-area methods.

i CO estimator CO = ki · below
1 Mean arterial pressure Pm

2 Windkessel [10] Pp · h
3 Liljestrand nonlinear compliance [26]

(
Pp

Ps+Pd

)
· h

4 Herd [16] (Pm − Pd) · h
5 Systolic area [40] As · h
6 Wesseling [41] (163 + h− 0.48 · Pm) · As · h

Table 2.1: Cardiac output estimators indexed by i. Pm, mean arterial pressure; Pp,
pulse pressure; Pd, diastolic arterial pressure; Ps, systolic arterial pressure; h, heart
rate; As, area during systole.

2.1.1 Lumped-Parameter Models

Electrical circuits have been used to model the relationship between CO and ABP, and

a number of lumped-parameter models of various complexities have been developed

to model circulation. Current is analogous to flow (Q), while voltage is analogous to

pressure (P). In the case of circulation, flow is equal to CO, so Q and CO can be used

interchangeably.

Method 1: Mean arterial pressure (MAP)

The viscous flow of blood through blood vessels contributes resistance to blood flow,

and the determinants of resistance include blood viscosity and radius of the blood

vessel. The blood vessels throughout the body can be modeled as resistors in parallel

or series. Peripheral resistance (R) is the total equivalent resistance of blood flow
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Figure 2-1: Mean arterial pressure model. Pm, mean arterial pressure; R, peripheral
resistance; Q cardiac output.

throughout the body. The mean arterial pressure model takes into account peripheral

resistance, mainly contributed from arterioles, and models the heart using a current

source Q as illustrated in Fig.2-1. This circuit analogy is valid only for time-averaged

flow and not intra-beat fluctuations. CO is computed using Ohm’s law as follows:

Q = k1 · Pm

where Pm is the mean arterial pressure, R is the peripheral resistance, and k1 = 1
R

.

Method 2: Windkessel

The Windkessel model [10], shown in Fig.2-2, describes the pulsatile phenomenon

of arterial blood pressure. As with the mean arterial pressure model, the resistor

component corresponds to the resistance of the systemic blood vessels. The capacitor

models the compliance of the arteries, which inherently store some blood during the

cardiac cycle. Compliance (C) is a measure of the distensibility of the blood vessels,

and the capacitor represents the aggregate elastic properties of the systemic peripheral

system:

C =
∆V

∆P

where V represents the volume of blood and P the transmural pressure across the

wall of the blood vessel. The heart is modeled by a time-varying current source Q(t)

representing blood flow, and each beat of the heart corresponds to an impulse with

an area equal to the stroke volume (SV), the amount of blood pumped per beat, such
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Figure 2-2: Windkessel model. P (t), arterial pressure; R, peripheral resistance; Q (t)
cardiac output; C compliance.

that:

Q (t) =
∑
n

SVn · δ (t− tn)

where n is the nth beat over which Q is calculated, tn is the time of the nth beat, and

SVn is the stroke volume due to the nth beat. The resulting pressure waveform exhibits

an exponential decay after each beat within the RC time constant and resembles the

physiological arterial pressure waveform, particularly during diastole. The state space

equation for the Windkessel model is:

C
dP (t)

dt
+
P (t)

R
= Q (t)

where C is the arterial compliance. By circuit analysis, stroke volume is proportional

to the pulse pressure, Pp (the amplitude range of the ABP waveform); heart rate, h;

and the compliance, C in steady state such that:

Q = k2 · Pp · h

where k2 = C.

Method 3: Liljestrand nonlinear compliance

Compliance varies throughout the cardiac cycle and is dependent on arterial pressure.

When pressure increases during systole, blood vessels expand and become stiffer, de-

creasing incremental compliance. This CO estimator uses a pressure-varying capacitor
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Figure 2-3: Liljestrand nonlinear compliance model. Compliance varies according to
systolic and diastolic pressure. P (t), arterial pressure; R, peripheral resistance; Q (t)
cardiac output; C compliance.

C = k3

Ps+Pd
to correct for this nonlinearity, as seen in Fig.2-3 [26]:

Q =
k3

Ps + Pd

· Pp · h

where k3 is an arbitrary constant derived from a measurement of cardiac output using

an independent method such as Fick’s or thermodilution.

Method 4: Herd

Herd empirically observed that Pm−Pd is proportional to stroke volume [16]. There is

no physiological intuition for this assumption, but it corrects for varying compliance,

with decreasing compliance as pressure increases. Cardiac output is therefore:

Q = k4 · (Pm − Pd) · h

2.1.2 Pressure-Area Methods

Another approach to cardiac output estimation using blood pressure is by approaching

the arterial tree from a distributed systems point of view. More specifically, systolic

area can be correlated with stroke volume to obtain an estimated CO.

Method 5: Systolic area

As illustrated in Fig.2-4, the area under the systole region, As, of the ABP waveform

is proportional to the stroke volume [40]. Systolic area is proportional to the amount
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Figure 2-4: Systolic area estimation. Stroke volume is proportional to the area of
the shaded region, Psa = As. Ts and Td represent the durations of the systolic and
diastolic phases of the beat. Adapted from [23].

of blood drained from the peripheral vasculature; a longer systole or higher systolic

pressures reflect a greater volume of blood the heart must eject. CO can be calculated

as follows:

Q = k5 · As · h

Method 6: Wesseling

Wesseling et al applied a correction factor to the systolic area method described above

to take into account non-negligible contribution of fluctuations in ABP during systole

[41]. Based on empirical studies and optimal linear regression analysis, impedance is

corrected for to calculate CO:

Q = k6 · (163 + h− 0.48 · Pm) · As · h

2.2 Evaluation Procedure

The cardiac output estimation and evaluation procedure is outlined in Fig.2-5. First,

appropriate ABP data were extracted from records in the MIMIC II database, in-

cluding 10-second trend files (T-files) that include a blood pressure SQI metric, fused

heart rate from ABP and ECG, and a heart rate SQI metric generated by Li et al

[25]. Then, appropriate blood pressure features were extracted and used to deter-
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Figure 2-5: Cardiac output estimation and evaluation procedure. ABP and ther-
modilution data was first extracted from the MIMIC II database. Relevant features
of the blood pressure waveform were extracted after segmenting the waveform into
beats. The HR and ABP SQIs of each beat were compared for each window, and if
the number of beats that satisfy SQI requirements was sufficient, a CO estimate was
made for the window. After the estimated CO was computed for the entire record,
CO was calibrated with thermodilution measurements, and the difference between
the estimated CO and thermodilution was analyzed for performance evaluation.

mine whether each window contains sufficiently clean ABP and HR to generate a CO

estimate. After CO estimates were generated for the record, the CO estimate was

calibrated with thermodilution measurements. To evaluate the performance of the

CO estimation procedure, estimated CO and measured thermodilution (TCO) were

compared.

2.2.1 Database-specific processing

Relevant source code: wavex2.m, Tex.m, trendex2.m

From the MIMIC II Database, 121 records were identified with simultaneously
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Figure 2-6: Beat extraction based on wabp. The SSF function amplifies the rising
portion of each beat. Adapted from [43].

available ABP waveforms and TCO measurements. The ABP waveforms were mea-

sured from the femoral or radial arteries and sampled at 125 Hz with 8-bit quantiza-

tion. TCO was available intermittently with a temporal resolution of 1 minute.

Trend files contain fused HR, HRSQI, and ABPSQI from previous analysis of

heart rate estimation on MIMIC II data [25] at 10-second intervals. The derivation of

the fused HR, HRSQI, and ABPSQI from ECG and ABP waveforms are described in

Sections 1.5 and 1.6. From this point forward in this chapter, the fused HR developed

will be referred to when mentioning heart rate.

2.2.2 Feature extraction

Relevant source code: wabp.m, abpfeature.m

Each ABP beat was extracted from the ABP waveform. A Matlab implementation

of Zong et al’s wabp algorithm [43] detects the onset of each beat using a slope

sum function (SSF), which is a representation of the rising portions of each beat.

An example is shown in Fig.2-6. A decision rule based on adaptive thresholds and

searching strategies determines whether or not an onset is detected.

After the waveform was segmented into beats, important features for each beat

were extracted. A list of features are included in Table 2.2. The feature extraction

algorithm was based on previous work by Sun [37]. For each beat, the local maximum

and minimum values correspond to systolic and diastolic blood pressures, respectively.
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Pulse pressure is the difference between the two. Mean pressure is the time average

of all pressure samples within the beat between adjacent onsets. The duration of the

beat is the time difference between adjacent onsets. The time of the systolic portion

of the beat is approximated as Ts = 0.3
√

60
h

[4], and pressure area during systole is

calculated as the area during this time between the instantaneous blood pressure and

diastolic pressure for that beat:

As =
∫

Ts

(P (t)− Pd)dt

Feature Description Units
Ps Systolic blood pressure mmHg
Pd Diastolic blood pressure mmHg
Pm Mean blood pressure mmHg
Pp Pulse pressure (Ps − Pd) mmHg
As Pressure area during systole mmHg · time
T Duration of each beat sec

Table 2.2: Extracted ABP Features.

2.2.3 SQI Correction

Relevant source code: find goodbeats.m

A cardiac output estimate was produced for each window with reliable ABP and

HR data. Each window was chosen as a minute preceding each TCO measurement,

since the invasive nature of the thermodilution technique may change heart rate and

blood pressure [31]. The length of the window is consistent with previous litera-

ture [37] [39] and was a trade-off between obtaining enough beats for an accurate

representation of the hemodynamic condition prior to the measurement, and the

nonstationarity of the patient’s condition.

Signal quality indices were used as metrics to determine whether or not beats were

sufficiently clean for estimation. HR, HRSQI, and ABPSQI from the T-files were

linearly interpolated for each beat. For a beat to be considered “good”, both heart

rate and blood pressure had to pass SQI thresholds such that HRSQI ≥ HRSQIthresh
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Figure 2-7: Distribution of records with thermodilution points taken during periods
of clean SQI.

and ABPSQI ≥ ABPSQIthresh. HRSQIthresh and ABPSQIthresh were varied, and their

effects on CO estimator accuracy are discussed in Section 2.3. Likewise, the window

size was also varied from 1 second to 7 minutes to examine how CO estimation

accuracy changes.

Within each window preceding TCO measurement, a minimum number of clean

beats were required to generate a CO estimate. This minimum was winthresh, which

was empirically set to 6 beats, or approximately 10% of the beats within a 1 minute

window. The effects of varying this threshold are explored in Section 2.3. The

distribution of records with thermodilution points taken during areas of clean SQI is

shown in Fig.2-7, and the distribution of thermodilution values is in Fig.2-8.

2.2.4 CO Estimation

Relevant source code: estA B.m, where A is the estimator number and B is the

estimator name (such as est04 Herd.m)

If a window contained sufficient “good” beats, an uncalibrated cardiac output

estimate was calculated, using the medians of the beat-by-beat HR and ABP features
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Figure 2-8: Thermodilution value distribution.

for beats passing SQI threshold tests. Beats that did not pass both the HR and ABP

SQI threshold tests were not included in determining CO. The CO estimators explored

were described in Section 2.1.

To account for arterial compliance and peripheral resistance factors, the CO es-

timate for a record needs to be calibrated with thermodilution measurements. An

optimal calibration method was applied using all available thermodilution points for

which CO estimates were produced, and the time between thermodilution measure-

ments for the 121 cases considered in this study is shown in Fig.2-9. The calibration

method is a least squares estimate between thermodilution and uncalibrated cardiac

output. We now define x as the uncalibrated cardiac output (UCO), y as the cali-

brated estimated cardiac output (ECO), r as the thermodilution measurement (TCO),

and k as the calibration constant. For a record containing n TCO measurements, the

calibration constant was calculated as follows:
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Figure 2-9: Time in hours between thermodilution measurements. Mean time is 3.1
hours, median time is 2.1 hours, and standard deviation is 8.8 hours.

TCO r = [r1r2 · · · rn]′

UCO x = [x1x2 · · ·xn]′

ECO y = kx

k =
r′x

x′x

After calibration, the calibrated cardiac output was compared to thermodilution.

An example is shown in Fig.2-10, where the beige plot is the estimated CO before

SQI correction, green plot is estimated CO after SQI correction, the black triangles

are the estimated CO within the window preceding each TCO point, and the red

circles represent TCO points with error bars of 20%.
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Figure 2-10: Case ID a40006 without SQI correction using the Liljestrand CO esti-
mation method. The beige plot is the estimated CO before SQI correction, green plot
is the estimated CO after SQI correction, the black triangles are the medians of the
good beats within the window preceding the TCO point, and the red circles represent
TCO points with error bars of 20%.

2.3 Results

2.3.1 Error Criteria

CO estimates were compared to thermodilution measurements to determine the accu-

racy of the estimates. A root mean square normalized error (RMSNE) criterion was

used, consistent with other CO evaluation studies [32]. Errors were calculated when

at least 5 TCO were made during areas of good SQI. For each subject s with ns com-

parable thermodilution points, the RMSNE for the ECO for the subject, RMSNEs,

is:

RMSNEs =

√√√√ 1

ns

ns∑
i=1

(
100(TCOi − ECOi)

TCOi

)2

, 1 ≤ s ≤ S

where S is 121, the total number of records.

To evaluate the accuracy of the estimates across all subjects, the RMSNEss were

averaged to obtain an average RMSNE, RMSNEa. The data set has a total of N

comparable thermodilution points across all records:

N =
S∑

s=1

ns

For all S subjects, RMSNEa is:
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RMSNEa =
1

N

S∑
s=1

RMSNEs

However, RMSNEa can be skewed in a particular direction if ns for each subject

is not taken into account, particularly if a subject has a greater ns and/or is more

error-prone. To account for these variations, a gross RMSNE measure, RMSNEg, is

also used. This error metric is a weighted mean of the individual RMSNEs according

to ns. The gross RMSNE, RMSNEg, is:

RMSNEg =

√√√√ 1

N

S∑
s=1

ns(RMSNE2
s )

RMSNEs, RMSNEa, and RMSNEg are in units of percent. Gross RMSNE es-

sentially treats each TCO point and its associated estimated CO, rather than each

record, as a data point. We therefore use the terminology average for errors across

cases, and gross for errors across individual TCO measurements. If each difference

between TCO and ECO in RMSNE is not normalized by TCO, a root mean square

error (RMSE) can be obtained in liters per minute as follows:

RMSEs =

√√√√ 1

ns

ns∑
i=1

(TCOi − ECOi)
2

Analogous average and gross RMSEs can be calculated for each data set. However,

results using both RMSNE and RMSE generally indicate the same trends and are

therefore not reported for all data sets in this thesis.

2.3.2 Estimator Comparison

Using a window of 1 minute and HRSQI threshold of 50, the various CO estimators

were compared at different ABPSQI thresholds. Fig.2-11 illustrates the results at

each SQI level. The Liljestrand estimator yields the lowest errors at all ABPSQI

thresholds, while the Herd estimator generally yields the highest errors, which is
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Figure 2-11: Estimator comparison at different ABPSQI thresholds.

consistent with previous CO estimation studies on MIMIC II data [37]. The mean

pressure method changes little with varying ABPSQI thresholds, and considering its

simplicity, yields lower errors at low ABPSQI thresholds than most estimators. The

Liljestrand and Wesseling estimators are the most sensitive to ABP signal quality,

with lower errors at higher ABPSQI thresholds. The Windkessel and systolic area

methods show higher accuracy as ABPSQI threshold is increased as well.

2.3.3 HRSQI and ABPSQI Thresholds

Using the Liljestrand method and a window size of 1 minute, the effects of varying

both ABPSQI and HRSQI thresholds were evaluated. Fig.2-12 illustrates the effect

of requiring minimum ABPSQI and HRSQI values for a particular subject, in this

case using an ABPSQI threshold of 90 and HRSQI threshold of 50. Sharp spikes in
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the CO estimate are removed or reduced with signal quality thresholding, as these

are most likely due to artifacts in the data recordings. Furthermore, sudden drops or

rises are mitigated, such as in the section at 1900 to 2000 minutes. Another example

is shown in Fig.2-13, where artifacts at approximately 850 minutes and 1220 minutes

are reduced or eliminated.

Fig.2-14 illustrates the results using the RMSNE error criteria, while Fig.2-15

illustrates the results using the RMSE error criteria. As signal quality thresholds

become more stringent, error decreases. By increasing either the HRSQI or ABPSQI

threshold, a lower error for both the gross and average RMSNE is achieved. Beats

that have questionable reliability are excluded from estimation, so the remaining beats

should more accurately reflect the underlying physiological condition. However, as

SQI requirements become more stringent, fewer thermodilution points are used in

calculating RMSNE, since fewer windows pass the SQI requirements and fewer CO

estimates are generated. The number of TCO-ECO pairs available for comparison

are shown in Fig.2-16.

The effect of ABPSQI threshold is more evident when HRSQI threshold is lower.

For ABPSQI thresholds greater than 70, the only beats that pass the threshold test

are beats designated as good by jSQI and wSQI. Error decreased up to 14% by varying

HRSQI, and as ABPSQI was increased, a similar decrease in error was also observed.

As with many real-world solutions to engineering problems, a tradeoff occurs between

accuracy and availability of CO estimates, since increased stringency excludes more

data from participating in the estimation process. However, even at HRSQI≥ 90 and

ABPSQI≥ 90, more than 80% of the data is still available to generate CO estimates.

At HRSQI and ABPSQI thresholds of 90, the lowest gross RMSNE was found to

be 15.4% (or 0.74 L/min) and average RMSNE was 13.7% (0.71 L/min), with 1216

comparison points from 109 records.

2.3.4 Window size

Window sizes of 1 minute to 7 minutes preceding the thermodilution measurements

were explored using the Liljestrand method and a HRSQI threshold of 50. Fig.2-17
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Figure 2-12: Case ID a40006 without SQI correction (a) and with SQI correction (b)
using the Liljestrand CO estimation method. The green plot is the estimated CO,
the black triangles are the median estimated CO of the good beats within the window
preceding the TCO point, and the red circles represent TCO points with error bars of
20%. Blood pressure and fused heart rate are shown in (c), and their corresponding
signal qualities are shown in (d).
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Figure 2-13: Case ID a40075 without SQI correction (a) and with SQI correction (b)
using the Liljestrand CO estimation method. The green plot is the estimated CO,
the black triangles are the medians of the good beats within the window preceding
the TCO point, and the red circles represent TCO points with error bars of 20%.
Blood pressure and fused heart rate are shown in (c), and their corresponding signal
qualities are shown in (d).
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Figure 2-14: CO estimation errors at different ABPSQI and HRSQI thresholds using
the RMSNE error criteria for the Liljestrand method.
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Figure 2-15: CO estimation errors at different ABPSQI and HRSQI thresholds using
the RMSE error criteria for the Liljestrand method.
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Figure 2-16: Data availability at different ABPSQI and HRSQI thresholds.
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Figure 2-17: Effect of window size and ABPSQI threshold on CO estimation error
using the Liljestrand method.

shows that window size has little influence on error, although the 1 minute window

provides estimates with the lowest error. This is logical considering thermodilution

measurements are made with 1-minute resolutions, and this window size is also prefer-

able for clinical use since CO estimates can be generated more frequently.

2.3.5 Ordering of mean and median averaging

Instead of providing the CO estimator with the median of the good beats within

the window, one could presumably also use the mean of these beats as inputs to

the estimator. Also, rather than performing mean or median operations prior to

CO estimation, beat-by-beat CO estimates could be generated from the good beats.

The CO estimate for the window would then be the mean or median of these beat

by beat CO estimates. These variations in the ordering of performing the mean or
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Figure 2-18: Effect of performing mean or median operation before and after CO
estimation using the Liljestrand method.

median operations were evaluated for a 1 minute window with HRSQI threshold of 50

using the Liljestrand method, and results are shown in Fig.2-18. As shown, the order

of performing mean or median operations in CO estimation has little effect on the

accuracy of estimated CO, and hence we chose to use median before CO estimation,

since mean or median before CO estimation yields marginally lower errors.

2.3.6 Window threshold

The minimum number of beats needed that pass the SQI requirements in each win-

dow to generate a CO estimate, winthresh, was set to be 6 beats, or approximately

10% of a 1 minute window. Using the Liljestrand method with HRSQI of 50 and 1

minute windows, the error for varying winthresh was computed and shown in Fig.2-19.

Generally, error decreases with increasing minimum number of beats, and the most

significant reduction in error is between 6 and 15 beats. After a minimum of 15
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Figure 2-19: Effect of minimum number of good beats in a window.

beats, increasing the minimum number of beats further has little effect on error. At

these higher values of winthresh, increasing ABPSQI threshold does not monotonically

decrease the error, most noticeably at ABPSQI threshold of 100. This effect may

be due to the fact that fewer segments preceding thermodilution measurements are

available that meet the minimum number of beats to generate a CO estimate.

2.3.7 Analysis at recommended parameters

Out of the parameters explored, the most important factors in generating accurate

CO estimates were ABPSQI threshold, HRSQI threshold, and estimator method.

For all signal quality thresholds investigated, the Liljestrand method yielded the

lowest error. We recommend using the Liljestrand estimator with 1-minute windows,

making estimates when 6 or more beats have HRSQIs and ABPSQIs greater than

90. Using these parameters, RMSNEg is 15.4% and RMSNEa is 13.7%, while RMSEg
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is 0.74 L/min and RMSEs is 0.71 L/min. In comparison with the gold standard

thermodilution method, which has an error of 10-20% (0.5-1 L/min for a standard 5

L/min CO), the accuracy of CO estimation using ABP falls in the same range. Note

that since windows of 1 minute are good estimators, we are free to ignore low quality

sections, such as throwing away a 1-minute window every 4 minutes to generate a CO

estimate for every 5 minutes.

At these recommended SQI thresholds at 1 minute windows, statistics for the

calibration constant ki of each estimator is shown in Table 2.3, where i is an index

from 1 through 6 corresponding to each estimator. The histogram of kis obtained is

shown for each estimator in Fig.2-20 through Fig.2-25. Calibration constants appear

to follow a long-tailed Gaussian distribution. A linear regression of TCO and ki are

shown for each estimator in Fig.2-26 through Fig.2-31. As shown, ki increases as

TCO increases for each estimator i, and the R2 values of the regressions for each

estimator are listed in Table 2.3. A possible explanation for the positive correlation

between ki and TCO could be from nonlinear behaviors at high pressures. As blood

vessels become stiffer at large pressures, ki increases due to changes in compliance.

Because TCO measurements are typically within a limited range for each record, the

global calibration method, which employs a least squares estimate between TCO and

uncalibrated CO, may yield higher kis at higher pressures and lower kis at lower

pressures.

i Estimator µki
µ̃ki

σki
R2

1 Mean arterial pressure 0.072 0.070 0.026 0.60
2 Windkessel 0.0010 0.00097 0.00036 0.49
3 Liljestrand nonlinear compliance 0.18 0.17 0.059 0.54
4 Herd 0.0033 0.0032 0.0012 0.46
5 Systolic area 0.0063 0.0060 0.0023 0.50
6 Wesseling 0.000030 0.000028 0.000011 0.50

Table 2.3: Statistics for calibration constants ki for different estimators at recom-
mended SQI thresholds to remove noisy data. µk is mean of k, µ̃k is median of k, σk

is standard deviation of k.
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Figure 2-20: Calibration constant his-
togram for Mean Arterial Pressure.

Figure 2-21: Calibration constant his-
togram for Windkessel.

Figure 2-22: Calibration constant his-
togram for Liljestrand nonlinear compli-
ance.

Figure 2-23: Calibration constant his-
togram for Herd.

Figure 2-24: Calibration constant his-
togram for Systolic area.

Figure 2-25: Calibration constant his-
togram for Wesseling.
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Figure 2-26: Calibration constant linear
regression with thermodilution for Mean
Arterial Pressure.

Figure 2-27: Calibration constant linear
regression with thermodilution for Wind-
kessel.

Figure 2-28: Calibration constant linear
regression with thermodilution for Liljes-
trand nonlinear compliance.

Figure 2-29: Calibration constant linear
regression with thermodilution for Herd.

Figure 2-30: Calibration constant linear
regression with thermodilution for Sys-
tolic area.

Figure 2-31: Calibration constant linear
regression with thermodilution for Wes-
seling.
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Figure 2-32: Normalized error,
(

ECO−TCO
TCO

)
(100%), at a range of thermodilution val-

ues.

CO estimation errors were analyzed at different CO estimate levels to determine

whether or not estimates were systematically overestimating or underestimating CO

at different physiological operating points. As shown in Fig.2-32 and Fig.2-33, for both

normalized and absolute errors, all estimators tended to overestimate at COs under 4

L/min and underestimate at COs greater than 4 L/min, indicating a more constrained

range of estimated COs compared to that obtained from TCO. Note that most of the

TCO values were clustered from 3 L/min to 8 L/min, as seen in Fig.2-8, and therefore

errors beyond this range have less statistical significance. Out of the estimators, the

MAP estimator was the most likely to overestimate at low COs and underestimate

at high COs, while the Herd estimator was least likely to overestimate at low COs.

The Liljestrand estimator performed only adequately in avoiding overestimation at

low COs and but was generally less likely to underestimate under at high COs.

Estimation error, both RMSNE and RMSE, were examined to determine whether

estimators were inclined to have high errors over a range of heart rates, mean ABPs,

and pulse pressure. The results for relating error with heart rate are shown in Fig.2-

34 and Fig.2-35, with Pm in Fig.2-36 and Fig.2-37, and with Pp in Fig.2-38 and
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Figure 2-33: Absolute error, ECO− TCO, at a range of thermodilution values.

Fig.2-39. For various heart rates, mean ABPs, and pulse pressures, the Liljestrand

estimator generally yielded the lowest errors. For a range of mean ABPs, Herd and

MAP estimators yielded the highest errors, while for a range of pulse pressures, MAP,

Windkessel, and Herd were generally the estimators with the highest errors. Note that

at extremely low or high values of each of these parameters, fewer points are available

to draw conclusions from and are therefore less statistically significant.

2.4 Discussion

CO estimators were evaluated using HRSQI and ABPSQI to eliminate ABP and

HR of poor quality. At all SQI thresholds explored, the Liljestrand method yielded

the lowest error in the sense of using the RMSNE and RMSE gross and average

errors. CO estimates made at 1-minute intervals were recommended using HRSQI

and ABPSQI thresholds of 90. Window size had little effect, while increasing winthresh

had limited utility in generating CO estimates with higher accuracy. The difference

between performing a mean or median operation in the estimation process also made

little change in the accuracy of the CO estimates. At recommended thresholds, the

63



Figure 2-34: RMSNE as a function of heart rate.

Figure 2-35: RMSE as a function of heart rate.
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Figure 2-36: RMSNE as a function of mean ABP.

Figure 2-37: RMSE as a function of mean ABP.
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Figure 2-38: RMSNE as a function of pulse pressure.

Figure 2-39: RMSE as a function of pulse pressure.
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Liljestrand estimator generally outperformed all other estimators examined, with the

least error over a range of heart rates, mean blood pressures, and pulse pressures

and having the least tendency to underestimate at high COs and overestimate at low

COs.

The results in this chapter are comparable to CO estimators developed elsewhere.

At HRSQI and ABPSQI thresholds at 90, the Liljestrand estimator yielded a 15.4%

gross RMSNE and 13.7% average RMSNE. Parlikar [32] achieved a gross RMSNE of

14.8% on a set of 12 human patients from the MIMIC I database, a previous database

of clinical information collected for the Beth Israel Deaconess Medical Center.

Based on the groundwork set by these results, additional research was performed

in collaboration with Abdala et al [1], using a linear combination (LC) of the 6

estimators examined in this thesis. The rationale for this approach was to see if

a weighted “voting” of each estimator could correct for the underestimating and

overestimating of COs at high and low CO levels, respectively. An online calibration

method was used rather than the global calibration technique employed so far, and

the data was divided to perform boostrap testing [9]. A 5% holdout was performed,

and the mean square error (MSE) was evaluated 20 times, holding out a different 5%

of data each time. Mean and standard deviations were calculated over these 20 sets.

The LC method yielded lower errors than any of the individual estimators, in-

cluding Liljestrand, at both high and low estimated CO levels. Comparison of the

LC estimator at HRSQI and ABPSQI thresholds of 90 with the other estimators are

shown in Fig.2-40, with the LC estimator achieving the lowest error. Performance of

estimators were also evaluated as a function of the number of available calibration

TCO points, and results indicate that error decreased as the number of calibration

points increased. In fact, error from the LC estimator was lower than all other esti-

mators up until 13 training points, after which the Liljestrand method outperformed

the rest. Therefore, we recommended the use of the combined estimator when fewer

than 13 TCO points are available for calibration, after which the Liljestrand estimator

provides a better estimate.

The clinical utility of the Liljestrand CO estimator and the LC estimator at rec-
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Figure 2-40: 5% bootstrap Mean Square Error (MSE) with raw estimations. The
estimators are in the following order: 1) mean arterial pressure, 2) Windkessel, 3)
Herd, 4) Liljestrand, 5) Systolic Area, 6) Wesseling, and 7) LC. Errors bars indicate
standard deviations over 20 runs.
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ommend SQI thresholds are explored in the following chapter.
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Chapter 3

Estimated Peripheral Resistance &

Vasoactive Drugs

Few studies have documented the utility of estimated CO or peripheral resistance

in relation to how well they reflect medications administered. Although many have

examined the effects of vasoactive medications on measured peripheral resistance, a

literature search indicates that all of these studies have been performed in controlled

settings rather than real-world clinical settings. The goal of this section is to deter-

mine how well estimated peripheral resistance derived from CO estimation techniques

described in Section 2.2 correspond to pressors given in an ICU setting. Estimated

peripheral resistance was derived from CO estimates using the Liljestrand and LC

estimators with SQI correction for ABP and HR. Changes in estimated peripheral

resistance (R̂) were correlated with changes in vasoactive medications to determine if

there is potentially any clinical utility of such estimates.

3.1 Vasoactive Drugs

Table 3.1 lists the drugs considered in this study and their vasoactive effects. Note

that for some drugs, the nature of the drug is dose-dependent, and can switch from

vasodilation to vasoconstriction and vice versa [28].
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Medication Vasodilator Vasoconstrictor
Dobutamine x

Dopamine, < 10µg/kg/min x
Dopamine, ≥ 10µg/kg/min x

Levophed x
Neosynephrine x

Table 3.1: List of vasoactive medications and their effects on peripheral resistance.

3.1.1 Dobutamine

Dobutamine is a synthetic catecholamine used to increase cardiac output primarily in

patients with decompensated heart failure due to systolic dysfunction who also have

a normal blood pressure [28]. As a β1-receptor agonist, dobutamine produces positive

inotropic and chronotropic effects, while as a weak β2-receptor agonist, dobutamine

also produces peripheral vasodilation. Dobutamine causes a dose-dependent increase

in stroke volume, decrease in cardiac filling pressures, and decrease in systemic vas-

cular resistance. Because dobutamine does not usually raise the blood pressure, it is

not recommended in patients with cardiogenic shock.

3.1.2 Dopamine

Dopamine is an endogenous catecholamine that activates a variety of receptors de-

pending on the dosage. At low dose rates (up to 10 µg/kg/min), dopamine innervates

the β-receptors in the heart and peripheral circulation, resulting in an increase in my-

ocardial contractility, increase in heart rate, and peripheral vasodilation [30]. This re-

sults in an increase in cardiac output. At high dose rates (>10 µg/kg/min), dopamine

progressively activates α-receptors in the systemic and pulmonary circulations, result-

ing in pulmonary and systemic vasoconstriction. Cardiac output decreases at these

dose rates. Dopamine is often used to perform cardiac stimulation and peripheral

vasoconstriction, such as during cardiogenic shock. Dopamine can also be used to

correct hypotension in septic shock.
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3.1.3 Levophed

Levophed, also known as norepinephrine, is a vasopressor often used to correct hy-

potension, particularly in septic shock [28]. Levophed stimulates α-receptors, result-

ing in dose-dependent increase in systemic vascular resistance. Levophed stimulates

cardiac β-receptors as well, but the effects on cardiac output vary.

3.1.4 Neosynephrine (Phenylephrine)

Neosynephrine, often used as a decongestant in nasal passages, is a α-receptor agonist

and acts as a vasoconstrictor. It also stimulates β-receptors in the heart to a lesser

extent. Cardiac output slightly decreases, while blood pressure is increased [18].

3.2 Experimental Procedure

3.2.1 Patient selection

A total of 89 cases with ABP waveforms during the administration of vasoactive

drugs listed in Table 3.1 were found in the MIMIC II Database. Those with intra-

aortic balloon pumps or poor quality ABP or HR during the periods of interest were

excluded, resulting in 76 cases. Each case was classified using primary and secondary

ICD-9 codes listed in Table 3.2 into 3 conditions: septic shock, cardiogenic shock,

and/or hemorrhage.

3.2.2 Estimated resistance

For each record, uncalibrated CO estimates (UCO) were made on non-overlapping

1-minute windows at ABPSQI and HRSQI thresholds of 90. A global calibration

constant was chosen using the median of ki, µ̃ki
, obtained from the 121 records used

in Chapter 2, where i denotes the estimator method as listed in the order shown in

Table 2.3. Calibration was performed to obtain estimated CO (ECO) for estimator

i such that:

73



Septic Shock
85.52 Septic shock
995.92 Severe sepsis

Cardiogenic Shock
785.51 Cardiogenic shock

Hemorrhage
578.9 Hemorrhage of gastrointestinal tract, unspecified
569.3 Hemorrhage of rectum and anus
431 Intracerebral hemorrhage
430 Subarachnoid hemorrhage

Table 3.2: List of ICD-9 codes used to identify patients with septic shock, cardiogenic
shock, and hemorrhage.

ECOi = µ̃ki
· UCO

The Liljestrand (i = 3) and LC estimators were analyzed in this chapter. In

the case of the LC estimator, scaling each contribution was particularly important

in preserving the weighting effect of each estimator. The individual estimators were

weighted according to the coefficients and an offset determined by the LC estimator:

ECOLC = 0.6277 + ab′

where

a = [0.2317 − 0.4372 − 0.3232 0.5669 − 0.2921 1.1471]

b = [ECO1 ECO2 · · ·ECO6]

A mean pressure (Pm) trend, sampled at 1-minute intervals, was obtained by

taking the median of beat-by-beat mean pressures with an ABPSQI of at least 90.

By applying Ohm’s law to the lumped-parameter model described in Section 2.1.1,

R̂ can be calculated as the ratio of Pm in mmHg and ECO in L/min and multiplied

by a constant to convert into peripheral resistance units (PRU) as follows:
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R̂ =
(
Pm

ECO

)(
60

1000

)

To remove sudden changes in R̂ due to artifacts or non-physiological measurements

not rejected by ABPSQI and HRSQI, a 31-point median filter was applied. Since the

R̂ is calculated for each 1-minute interval, this is equivalent to filtering over 31 minutes

to obtain each R̂ point.

3.2.3 Event identification

For each case, times when only one vasoactive drug was being administered were

identified. Times when vasopressin and epinephrine were also being administered at

the same time as the drugs in Table 3.1 were not considered in this study. An event

was identified as a change in pressor dose after at least 90 minutes of stable drug

levels, or a region of drug stability. If dopamine was administered, dopamine levels

above ≥ 10µg/kg/min were not included in the analysis such that only doses with

vasodilating effects were considered. Furthermore, R̂ had to be available within the

vinicity of the dose changes, as detailed in Section 3.2.4. As an example, Fig.3-1

shows the mean ABP, estimated CO, R̂, and levophed dose levels. Regions of drug

stability are indicated in red in the levophed plot, and events occur at approximately

1000 min, 1215 min, and 1785 min. Although medication levels were adjusted at

approximately 1500 min, insufficient R̂ data were available to characterize the effect

of the medication.

With these restrictions, 132 dose change events were selected from 37 cases.

3.2.4 Estimated resistance changes

For each event, R̂ before and after the change in pressor dose was examined. The

median R̂ 15 minutes prior to the dose change was defined as the baseline, R̂−. R̂

levels after the next region of drug stability was reached was characterized using the

median of R̂ during the 6th to 20th minutes of the stable region following the change,
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Figure 3-1: Pm, ECO, R̂, and levophed doses for a41244. Record starts on March 23,
2017 at 00:21:39. Regions of hemodynamic stability are marked in red on resistance
and levophed plots. Green circles represent R̂−, and magenta circles represent R̂+.
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such that 5 minutes was allotted for the drug to take effect. This level of R̂ after the

event was defined as R̂+. In Fig.3-1, R̂− for each event is shown in green circles, and

R̂+ is shown in magenta circles. The percent change in R̂ is defined as follows:

∆R̂ = (100)

 R̂+ − R̂−(
1
2

) (
R̂+ + R̂−

)


Rate of change in R̂ was also analyzed. The time in minutes elapsed between

regions of drug stability for each event was determined. For each event, the duration

of resistance change was calculated as the time (t−) between the minute before the end

of one region of drug stability to the start of the following one (t+). t− was assigned

to be a minute before the end of the region of drug stability to prevent dividing by

infinity if the event was at the intersection of two regions of drug stability, such as

the event at 1000 minutes in Fig. 3-1. Clinically, this also accounts for the time the

ICU nurses take to change medication levels. The slope ∇R̂ in units of PRU/min is:

∇R̂ =
R̂+ − R̂−

t+ − t−

3.2.5 Dose level changes

For each event, pressor dose changes were characterized. The baseline dose, D−, was

the drug level prior to the dose change; the new dose level, D+, was the drug level of

the following region of drug stability. The percent change of dose level is defined as

follows:

∆D = (100)

 D+ −D−(
1
2

)
(D+ +D−)



For gradient comparison, t− and t+ were defined for dose level changes in the same

manner as for R̂. The slope ∇D in units of µg/kg/min2 is:

∇D =
D+ −D−

t+ − t−
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Figure 3-2: Distribution of ∆R̂ and ∆D for vasoconstrictors for the Liljestrand esti-
mator. The green and red ellipses represent the 2 and 3 standard deviation boundaries
of the joint distribution.

3.2.6 Outlier rejection

For vasoconstrictors and vasodilators, a joint probability mass function (PMF) was

estimated for each from a histogram of ∆R̂ and ∆D. For the Liljestrand estimator,

the distributions for vasoconstricting medications for ∆R̂ and ∆D analysis is shown

in Fig.3-2 and for vasodilating medications in Fig.3-3. The means (µ) and standard

deviations (σ) of ∆R̂ and ∆D were calculated to define an ellipse with a semimajor

axis of 2σ∆D and semiminor axis of 2σ∆R̂, centered at µ∆D and µ∆R̂. This ellipse

is shown in green, while an analogous ellipse with a semimajor axis of 3σ∆D and

semiminor axis of 3σ∆R̂ is shown in red. Points that occurred outside of the 2σ

region were considered outliers and were not considered in the correlation analysis.

An analogous procedure was conducted for ∇R̂ and ∇D to exclude outliers. The

distributions for vasoconstrictors are shown in Fig.3-4 and for vasodilators in Fig.3-5.

The same method of outlier rejection was performed for the LC estimator. The

histograms of ∆R̂ and ∆D are shown in Fig.3-6 for vasoconstrictors and Fig.3-7 for

vasodilators. The histograms of∇R̂ and∇D are shown in Fig.3-8 for vasoconstrictors

and Fig.3-9 for vasodilators.
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Figure 3-3: Distribution of ∆R̂ and ∆D for vasodilators for the Liljestrand estimator.
The green and red ellipses represent the 2 and 3 standard deviation boundaries of the
joint distribution.

Figure 3-4: Distribution of ∇R̂ and ∇D for vasoconstrictors for the Liljestrand esti-
mator. The green and red ellipses represent the 2 and 3 standard deviation boundaries
of the joint distribution.
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Figure 3-5: Distribution of ∇R̂ and ∇D for vasodilators for the Liljestrand estimator.
The green and red ellipses represent the 2 and 3 standard deviation boundaries of the
joint distribution.

Figure 3-6: Distribution of ∆R̂ and ∆D for vasoconstrictors for the LC estimator.
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Figure 3-7: Distribution of ∆R̂ and ∆D for vasodilators for the LC estimator.

Figure 3-8: Distribution of ∇R̂ and ∇D for vasoconstrictors for the LC estimator.
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Figure 3-9: Distribution of ∇R̂ and ∇D for vasodilators for the LC estimator.

3.3 Results

3.3.1 Proportion of expected events

The expected changes in R̂ were matched with their corresponding changes in drug

level for each event. For vasodilators, increase in medication would theoretically result

in a decrease in estimated resistance, and vice versa. Likewise, for vasoconstrictors,

increase in medication would result in increased estimated resistance, and a decrease

in the former would also result in a decrease in the latter. The proportion of R̂ changes

that follow these medication level changes, or the proportion of expected events, are

listed in Table 3.3 for R̂ based on the both the Liljestrand and LC estimators. For

most medications, the expected changes in R̂ correspond to changes in medication

levels, but dopamine performed poorly in matching medication changes to R̂ for

resistance estimates based on both CO estimators. The LC estimator had a lower

proportion of resistance estimates in their expected directions for all medications

except dopamine.
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Medication Correct expected changes (%) Correct expected slopes

Liljestrand

Vasoconstrictors 67.9 67.3
Levophed 65.5 64.1
Neosynephrine 72.4 73.0

Vasodilators 45.5 45.5
Dobutamine 66.7 80.0
Dopamine 37.5 35.4

LC

Vasoconstrictors 64.0 62.4
Levophed 59.6 61.3
Neosynephrine 72.4 64.1

Vasodilators 47.6 37.5
Dobutamine 50.0 50.0
Dopamine 46.7 33.3

Table 3.3: Expected estimated resistance and medication changes.

3.3.2 Regression analysis for ∆R̂ and ∆D

For each event, ∆R̂ was plotted against ∆D, as shown in Fig.3-10 for the Liljestrand

estimator. Quadrants are separated by red dashed lines. For vasoconstrictors, the

events that behave as expected are located in the first and third quatrants, while for

vasodilators, the events that behave as expected are located in the second and fourth

quatrants. To quantify the relationship between ∆R̂ and ∆D for each, a linear

best fit was performed on the changes in dose levels and estimated resistances, as

shown in Fig.3-10. Vasoconstricting medications should have a positive slope, while

vasodilating medications should have a negative slope. Regression was also performed

for each medication analyzed; results are shown in Fig.3-11. The best fit is shown

with a green line in each plot, with regression coefficients and R2 values listed in

Table 3.4.

The same analysis was performed for the LC estimator. Results for linear re-

gression of vasoconstrictors and vasodilators are shown in Fig.3-12, and regressions

according to medication are shown in Fig.3-13. Regression coefficients and R2 values

are listed in Table 3.5.

For Liljestrand estimator ∆R̂ and ∆D analysis, while levophed, neosynephrine,
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Figure 3-10: Medication changes and corresponding resistance changes for each event,
organized by drug effect, for Liljestrand estimator.

Figure 3-11: Medication changes and corresponding resistance changes for each event,
organized by medication, for Liljestrand estimator.
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Figure 3-12: Medication changes and corresponding resistance changes for each event,
organized by drug effect, for LC estimator.

Figure 3-13: Medication changes and corresponding resistance changes for each event,
organized by medication, for LC estimator.

85



Medication a b R2

Vasoconstrictors 0.0152 0.5815 0.051
Levophed 0.0100 0.2002 0.026
Neosynephrine 0.0252 1.4755 0.14

Vasodilators 0.0108 0.8729 0.057
Dobutamine -0.0084 0.4303 0.0086
Dopamine 0.0121 0.7905 0.070

Table 3.4: ∆R̂ and ∆D regression results for the Liljestrand estimator. Linear re-
gression line in the form of y = ax+ b.

Medication a b R2

Vasoconstrictors 0.0195 0.0373 0.027
Levophed 0.0099 0.4548 0.016
Neosynephrine 0.0394 -0.4652 0.18

Vasodilators 0.0141 2.6135 0.055
Dobutamine 0.0761 4.3915 0.29
Dopamine 0.0090 2.6898 0.012

Table 3.5: ∆R̂ and ∆D regression results for the LC estimator. Linear regression line
in the form of y = ax+ b.

and dobutamine had expected linear regression slopes, dopamine events displayed

a positive slope relationship, indicating that increasing dopamine tends to increase

estimated resistance. The low R2 values for the linear regressions suggest that the

effect of change in medication level on change in estimated resistance is weak. For

the LC estimator, all regressions indicate a positive slope relationship; that is, for

all medications, regardless of whether it be a vasodilator or vasoconstrictor, tend to

increase estimated resistance. In particular, for dobutamine, the R2 value for the LC

estimator is higher than that of the Liljestrand estimator, indicating that the con-

stricting effect of dobutamine is a stronger relationship than the dilating relationship

found using the Liljestrand estimator. However, the sparsity of dobutamine events

used for the regression analysis indicate that this conclusion is very weak and should

be further examined using additional data points.
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Figure 3-14: Medication slopes and corresponding resistance slopes for each event,
organized by drug effect for the Liljestrand estimator.

3.3.3 Regression analysis for ∇R̂ and ∇D

An analogous analysis was performed for ∇R̂ and ∇D; ∇R̂ and ∇D were matched

for each change for vasoconstrictors and vasodilators in Fig.3-14 and for each drug in

Fig.3-15 for the Liljestrand estimator. Linear regression results are shown in Table

3.6.

Medication a b R2

Vasoconstrictors 0.0145 -0.0034 0.47
Levophed 0.0185 -0.0046 0.0063
Neosynephrine 0.0148 -0.0013 0.079

Vasodilators -0.0127 0.0013 0.019
Dobutamine -0.0177 -0.0017 0.80
Dopamine 0.0015 -0.0005 0.0090

Table 3.6: ∇R̂ and ∇D regression results for the Liljestrand estimator. Linear re-
gression line in the form of y = ax+ b.

The same slope analysis was performed for the LC estimator. Results for linear

regression of vasoconstrictors and vasodilators are shown in Fig.3-16, and regressions

according to medication are shown in Fig.3-17. Regression coefficients and R2 values

are listed in Table 3.7.

For Liljestrand estimator analysis, like regression analysis for ∆R̂ and ∆D, dobu-
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Figure 3-15: Medication slopes and corresponding resistance slopes for each event,
organized by medication for the Liljestrand estimator.

Figure 3-16: Medication slopes and corresponding resistance slopes for each event,
organized by drug effect for the LC estimator.
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Figure 3-17: Medication slopes and corresponding resistance slopes for each event,
organized by medication for the LC estimator.

Medication a b R2

Vasoconstrictors 0.0499 -0.0018 0.0033
Levophed 0.1126 -0.014 0.018
Neosynephrine 0.0473 -0.0163 0.036

Vasodilators -0.0039 0.0038 0.015
Dobutamine -0.0291 -0.0235 0.12
Dopamine 0.0217 -0.0043 0.071

Table 3.7: ∇R̂ and ∇D regression results for the LC estimator. Linear regression line
in the form of y = ax+ b.

tamine, levophed, and neosynephrine exhibited the expected slope sign, whereas

dopamine changes were positively correlated rather than negatively correlated as

predicted. The R2 values for the linear regressions were low, indicating the weak

effect of slope of medication level on slope of estimated resistance. For the LC es-

timator, unlike the analysis for the percent change regressions, slope of dobutamine

level was negatively correlated with estimated resistance slope, as expected. Both

Liljestrand and LC estimators indicate a positive correlation between dopamine level

slopes and estimated resistance slopes, with this relationship stronger for the LC es-

timator. Dobutamine generally exhibits a higher R2 value but is confounded by the

few number of points used in regression.
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3.4 Discussion

Little correlation was found between changes in estimated resistance and medication

dose, whether that be by examining changes (∆R̂ and ∆D) or taking into account

temporal factors using slopes (∇R̂ and∇D) using either the Liljestrand or LC estima-

tor. In particular, the effect of dopamine was inconsistent with the known vasodilating

action the drug has at low doses, although this discrepency may be due to the low

number of samples available. Rosenthal et al [33] described the strength of a model

by the magnitude of R2. A “medium effect size” is when R2 ≈ 0.1, a “large effect

size” is when R2 ≈ 0.25, and a “very large effect size” is when R2 ≈ 0.4. Following

these guidelines, for the Liljestrand estimator, we can see that changes in vasoactive

medication had little effect on ∆R̂, although neosynephrine change had a medium

effect on ∆R̂. The R2 value between neosynephrine ∆D and ∆R̂ increased when

using the LC estimator, suggesting that the LC estimator produces a better repre-

sentation of estimated CO than Liljestrand. ∇D for vasoconstrictors had a very large

effect on ∇R̂, but the remaining vasoactive variables examined had little effect on

∇R̂. While some regressions for dobutamine yielded high R2 values, this result was

confounded by the small number of points used in regression analysis and is therefore

inconclusive.

The lack of clear correlation between changes in and slopes of medications on

estimated resistance can be attributed to the variations in the effects of drugs on

various patients. The extent of resistance change may vary between patients, so a

same increase in pressor levels may result in different degrees of resistance changes

for different patients, leading to a low R2 value when performing regression analysis.

In particular, for dopamine, which can have vasodilating or vasoconstricting effects

depending on the dose, the 10µg/kg/min threshold beyond which the drug becomes

vasoconstricting may depend on the patient and his/her hemodynamic condition at

the time of the intervention. Therefore, all the dopamine events for which medica-

tion level was below 10 µg/kg/min may not have have been administered to lower

peripheral resistance.
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Furthermore, additional medical procedures or conditions may have occurred dur-

ing the time pressors were administered. The deterioration of a pathology or admin-

istration of drugs beyond the scope of those considered in this chapter could have

affected hemodynamics.

However, the most important confounding factor in correlating estimated resis-

tance changes and medication level changes is that the SQI metrics used to remove

artifactual or non-physiological ABP waveforms were insufficient for continuous CO

estimation. Although Chapter 2 discusses using ABPSQI and HRSQI to reduce esti-

mation error, windows of up to only 7 minutes local to thermodilution measurements

were used to compare estimated CO and TCO. However, in examining continuous

CO estimation necessary for correlation with medication levels, the effects of gradual

non-physiological changes in ABP over longer periods of tens of minutes can be seen

in the form of implausible R̂ values that can increase or decrease beyond the limits

of physiological norms. While steady changes in a patient’s hemodynamic stability

may also lead to these gradual changes in R̂, examination of the ABP waveform from

which CO estimation parameters were extracted, complemented with additional in-

formation at the time such as other measured signals, other medications administered,

and nurse’s notes, indicated corrupt signals of dubious signal fidelities. Current SQI

metrics work well in detecting artifacts or changes that can occur within a few beats,

but not over tens of minutes. The shortcomings in current SQI metrics are explored

in the following chapter.
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Chapter 4

Limitations of Signal Quality

Indices

Signal quality indices, described in Sections 1.5 and 1.6, for arterial blood pressure

and heart rate were used in the cardiac output estimation procedure to reject arti-

fictual or non-physiological data. While the procedure described in Chapter 2 utilizes

SQIs to ensure accurate CO estimation, examining the clinical utility of estimated

CO through correlation of vasoactive medication with peripheral resistance estimates

reveals that dubious estimates are still produced, as seen in Chapter 3. The limita-

tions of estimating CO and the resulting peripheral resistance through current SQI

methods are discussed in this chapter, focusing on ABP signal quality. A proposed

method for detecting damping is described.

4.1 SQI for ABP

Current SQI algorithms detect changes that occur within a few beats. ABPSQI con-

sists of jSQI and wSQI, both of which use beat-by-beat changes in blood pressure

features to determine signal quality. This metric detects artifacts with short onsets,

such as sudden patient movement or sensor disconnections. However, other artifacts

such as ABP damping are not well-detected. For these artifacts, the change in blood

pressure occurs more gradually, up to a few hours, until ABP waveform is so im-
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plausible that it is finally designated as artifactual by ABPSQI, if it is detected at

all. Possible causes for these types of non-physiological waveforms include clogging of

the transducer or kinked tubing. For the Liljestrand estimator, any underestimation

of pulse pressure or overestimation of systolic or diastolic pressures lead to a lower

stroke volume and consequently a lower CO estimate.

Li et al classified ABP artifacts in [24] into the following categories:

1. Saturation to mean: decreased pulse pressure - the systolic pressure decreases,

diastolic pressure increases, and mean pressure remains constant

2. Saturation to maximum: systolic, diastolic and mean pressure increase to the

maximum value allowed by the patient monitoring system

3. Saturation to minimum: systolic, diastolic and mean pressure decrease to the

maximum value allowed by the patient monitoring system

4. High frequency

5. Square wave

6. Impulse

While artifacts 4-6 are easily detected with ABPSQI, the first 3 are not, particu-

larly when the saturations are over the course of tens of minutes. Furthermore, this

ABP artifact classification scheme does not take into consideration artifacts where

systolic pressure changes while diastolic pressure remains constant, or vice versa. At

other times, examining ABP waveform while taking into consideration HR reveals

suspicious behavior that would not have otherwise been obvious by only following

ABP.

4.1.1 Saturation

Saturation artifacts are typically a gradual convergence of systolic, diastolic, and

mean pressures to a common value. An example is shown in Fig.4-1, where the

estimated CO, fused HR, and resulting estimated peripheral resistance are shown.
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Estimated CO procedure and R calculations were derived as explained previously in

chapters 2 and 3, calculated over one-minute intervals only when 6 or more beats

satisfied ABPSQI ≥ 90 and HRSQI ≥ 90. The extracted systolic, diastolic and

mean pressures are also displayed at one minute intervals only when sufficient beats

satisfied SQI requirements. These pressures are overlaid with the raw blood pressure

waveform. Periods of signal quality greater than 90 for HRSQI and ABPSQI are

flagged on their respective plots. Impulse artifacts at approximately 1525 min are

readily detected, but the blood pressure waveform gradually saturates to the mean

blood pressure starting at 1560 min, with systolic pressure decreasing and diastolic

pressure increasing. Damping is not detected until the narrowing of the signal has

already begun and is not detected until approximately 1610 minutes - almost an

hour after the onset of abnormality. Consequently, underestimation of pulse pressure

lowers the CO estimate and, along with a drop in HR, leads to a large increase in

estimated resistance to twice of its initial value.

A saturation artifact with a shorter onset time is shown Fig.4-2 at approximately

1730 min. Although the saturation artifact is detected by ABPSQI, the narrowing

of the ABP waveform that follows up to the saturation artifact is not, as shown in

Fig.4-3. The pulse pressure rapidly decreases, and diastolic pressure increases while

systolic pressure decreases. This ABP distortion leads to a sharp downswing in the

estimated CO and sharp upswing in estimated R.

4.1.2 Systolic or diastolic pressure jumps

For some artifacts, either systolic or diastolic pressure is significantly altered but is

still within physiological limits and thus not detected by current SQI methods. In

addition to the saturation artifacts discussed previously, Fig.4-2 also illustrates a

weakness of current SQI metrics not accounted for in Li et al’s artifact classification

scheme [24]. At approximately 1640 min to 1670 min, diastolic pressure increases

despite little change in systolic pressure. Although the high diastolic pressure is

detected prior to 1650 min, SQI metrics fail to detect the artifactual segment after

1650, resulting in an underestimation of CO and an overestimation of R.
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Figure 4-1: Estimated CO, estimated R, HR, and ABP for a41232. Periods of signal
quality greater than 90 for HRSQI and ABPSQI are flagged on their respective plots.
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Figure 4-2: Estimated CO, estimated R, HR, and ABP for a40694. Periods of signal
quality greater than 90 for HRSQI and ABPSQI are flagged on their respective plots.
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Figure 4-3: Example of artifact from a40694: saturation to mean.

Systolic pressure jumps can occur within the same vicinity as diastolic jumps in

the same record. In Fig.4-4, diastolic pressure increases at about 2230 min to 2250

min, while systolic pressure remains stable. At 2470 minutes, the opposite occurs:

systolic pressure decreases while diastolic pressure is relatively constant. We also see

that at 2300 minutes, diastolic pressure slowly increases until the systolic pressure

also decreases such that SQI metrics detect the non-physiological pressures. During

each of these artifacts, estimated CO decreases dramatically, leading to corresponding

increases in estimated resistance. If these periods were indeed a reflection of the

patient’s underlying hemodynamics, systolic, diastolic, and mean pressures would

tend to change in the same direction.

4.1.3 Gradual artifacts requiring HR examination

Even by expert examination, some slow-moving changes are difficult to distinguish

between artifactual and physiological. Fig.4-5 illustrates a case with a gradual de-

crease in systolic, diastolic, and mean blood pressures starting just before 600 min
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Figure 4-4: Estimated CO, estimated R, HR, and ABP for a40542. Periods of signal
quality greater than 90 for HRSQI and ABPSQI are flagged on their respective plots.
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and is restored to normal levels after over an hour. Although this type of artifact does

not have a large impact on CO estimates, the resulting resistance estimate changes

with the drop and rise in mean blood pressure. While this may be a plausible phys-

iologic variation in blood pressure, the stable heart rate makes this hemodynamic

fluctation suspicious. Further verification may be needed using other patient data

such as medications administered, nurse’s notes, or other sources of data.

A similar example is shown in Fig.4-6, where a gradual decrease in systolic, dias-

tolic, and mean blood pressures occur at approximately 1260 min and is accompanied

by a slight decrease in heart rate. Blood pressure and heart rate are restored at 1350

min. The gradual decrease in blood pressure may not appear to be an artifact, but an

accompanying increase in heart rate, which would be a baroreceptor response, would

appear more physiologically plausible unless the patient was severely compromised.

Therefore, additional data would need to be reviewed to examine the blood pressure

quality.

Other cases with varying systolic, diastolic, and mean pressures with relatively

constant heart rates are shown in Fig.4-7 and Fig.4-8. In the case of Fig.4-8, ther-

modilution measurements are available, which indicate a gradual rise in CO. However,

the fluctuations in estimated CO and estimated R with a relatively constant HR puts

suspicion on the hemodynamic estimates.

4.2 Proposed damping detection method

Of these slow-changing artifacts, damping is one that can be potentially detected

using simple signal processing techniques. The resulting ABP waveform often leads

to an underestimation of pulse pressure and systolic pressure and an overestimation

of diastolic pressure. Upon the onset of damping, systolic pressure slowly drops and

diastolic pressure rises while the mean pressure remains constant until the signal

fidelity deteriorates to a point in which the condition is brought to the attention of

the ICU nurse. The tubing is then manually flushed, resulting in a sharp increase in

pressure to the maximum level allowed by the bedside monitor, as shown in Fig.4-9.
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Figure 4-5: Estimated CO, estimated R, HR, and ABP for a40638. Periods of signal
quality greater than 90 for HRSQI and ABPSQI are flagged on their respective plots.
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Figure 4-6: Estimated CO, estimated R, HR, and ABP for a41895. Periods of signal
quality greater than 90 for HRSQI and ABPSQI are flagged on their respective plots.
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Figure 4-7: Estimated CO, estimated R, HR, and ABP for a41681. Periods of signal
quality greater than 90 for HRSQI and ABPSQI are flagged on their respective plots.
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Figure 4-8: Estimated CO, estimated R, HR, and ABP for a40968. Thermodilution
is shown in red with error bars of 20%. Periods of signal quality greater than 90 for
HRSQI and ABPSQI are flagged on their respective plots.
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Figure 4-9: Example of artifact from a41232: damping and consequent flush.

After flushing, the ABP signal returns to its previous amplitude prior to damping, as

seen in 4-1.

A proposed method of detecting damping is described in the following sections

and outlined in Fig.4-10. Instantaneous ABP is denoted as P [n].

4.2.1 Flushing detection

During flushing, blood pressure saturates to the maximum readings allowed by the

patient monitoring system. The flushing artifact resembles a square wave, denoted

as ΠN [n]:

ΠN [n] =

 1, |n| ≤ N

0 |n| > N.

N , in units of samples, would be determined by examining a large number of

flushing artifacts and finding the average duration in number of samples of each

flushing. To detect flushing, a convolution operation can be performed on the ABP
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Figure 4-10: Proposed damping detection method.

waveform:

x[n] = P [n] ∗ ΠN [n]

Areas where x[n] exceeds an empirically determined threshold would correspond

with flushings in the ABP waveform. The sample after blood pressure is restored

after flushing is designated as n+
f , while the sample immediately before the flushing

is designated as n−f , as shown in Fig.4-14.

4.2.2 Envelope extraction

To monitor the progression of damping, the upper and lower envelopes of the ABP

waveform need to be extracted. The systolic and diastolic pressures represent the

upper and lower envelopes, respectively, and can be obtained using beat extraction

algorithm wabp and selecting the maximum and minimum pressures within each beat.
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Figure 4-11: Envelope extraction for a40022.

Presumably, these pressures would have to be extracted for any cardiac output or re-

sistance estimation, thereby adding little additional computation for envelope extrac-

tion. By applying a median filter to the systolic and diastolic beat-by-beat pressures,

the upper and lower envelopes can be computed, designated as Ps[n] and Pd[n] re-

spectively. The length of the filter can be determined empirically but should be high

enough to remove sudden artifacts. An example is shown in Fig.4-11, whereby a one-

minute median filter was applied to the maximum and minimum pressures within

each detected beat. The mean pressure is also shown.

Other envelope extraction methods, such as the RMS or Hilbert methods [14],

can be used for a computationally more efficient way of computing upper and lower

envelopes if systolic and diastolic pressures are not readily available. The results of

these methods are shown in Fig.4-12 and Fig.4-13 for RMS and Hilbert methods re-

spectively. Median filters can be applied to the upper and lower envelopes to eliminate

sudden spikes in blood pressure.
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Figure 4-12: Envelope extraction for a40022 using the RMS method.

Figure 4-13: Envelope extraction for a40022 using the Hilbert method.

4.2.3 Fidelity search

ABP after the characteristic flush of a damped waveform is often restored to normal

levels. A baseline level of physiological systolic, diastolic, and mean pressures can

be obtained by taking the median of a segment of ABP after flush. These baseline

levels are designated as P̃s, P̃d, and P̃m for systolic, diastolic, and mean pressures

respectively. The length of the segment W should be determined empirically. Let

f(x[n], x[n + 1], ...x[n + W ]) denote the median operation of the n to n + W points

in x. The baseline levels are:

P̃s = f
(
Ps[n

+
f ], Ps[n

+
f + 1], ...Ps[n

+
f +W ]

)

P̃d = f
(
Pd[n+

f ], Pd[n+
f + 1], ...Pd[n+

f +W ]
)

P̃m =
(

1

3

) (
P̃s − P̃d

)
+ P̃d
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Figure 4-14: Fidelity search for a41661.

After physiological levels for ABP are established, ABP prior to the flush should

be searched to locate baseline levels in order to determine when the damping started.

Because of physiological fluctuations, an empirically-determined pressure interval σs

and σd should be added to baseline pressures in this search for both the upper and

lower envelopes. Physiological areas of ABP prior to the flush should have envelopes

that be satisfy the following inequalities:

P̃s − σs < Ps[n < n−f ] < P̃s + σs

P̃d − σd < Pd[n < n−f ] < P̃d + σd

The last sample of the physiological segment prior to the flush that satisfies these

inequalities is designated as np. To ensure that the label np is not mistakenly assigned

to a segment when noisy areas between np and n < n−f fulfill this inequality, np should

be assigned only when a window prior to np also satisfies the above inequalities.

All n between np and n < n+
f should be designated as poor SQI (SQI=0). n ≥ n+

f

and n ≤ np should be designated as good SQI (SQI=1), subject to correction by

existing ABP signal quality metrics such as jSQI and wSQI. An example of such a

fidelity search is shown in Fig.4-14.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, the effect of signal quality indices for both heart rate and arterial blood

pressure were examined on six different cardiac output estimators. The clinical utility

of the CO estimators were analyzed by estimating the peripheral resistance derived

from the Liljestrand and LC estimators. Changes in vasoactive medication doses

were related with changes in estimated R, revealing the limitations of current SQI

methods.

Chapter 2 described estimator methods and discussed results from analyzing the

accuracy of estimators after incorporating SQI metrics. SQI correction for both ABP

and HR were used, as segments in the ABP waveform were ignored if they did not

meet both HRSQI and ABPSQI criteria. Six CO estimators (four lumped-parameter

models and two systolic area methods) were compared at HRSQI ≥ 50 and varying

ABPSQI. At all levels of SQI, the Liljestrand estimator yielded the lowest error,

with thermodilution being the gold standard. As HRSQI and ABPSQI requirements

increased, estimated CO errors decreased while reducing little of the available data.

A SQI threshold of 90 for both HRSQI and ABPSQI using the Liljestrand estimate

was recommended for estimates over 1-minute intervals. At these thresholds, the

lowest gross root mean square normalized error (RMSNE) was found to be 15.4% (or

0.74 L/min) and average RMSNE was 13.7% (0.71 L/min). Based on these results, a
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linear combination (LC) of the six CO estimation methods was developed and proved

superior to all other methods when up to 13 TCO calibration values were used.

Chapter 3 discussed the clinical utility of CO estimates. Estimated resistance was

calculated using the ratio of mean ABP and estimated CO derived using the recom-

mended procedure from Chapter 2. Four vasoactive medications (two vasodilators and

two vasoconstrictors) were extracted for 37 cases, and times when medication level

changed after 90 minutes of constant dose levels were examined. For each event, the

change in medication level and the corresponding change estimated resistance was ex-

amined. However, regression analysis failed to show a significant correlation between

changes and slopes of dose level and estimated resistance, whether that be resistance

derived from the Liljestrand estimator or the LC estimator, a linear combination of

the 6 estimators examined in Chapter 2.

Chapter 4 draws upon examples that indicate the limitations of current SQI met-

rics, particularly for ABP. While ABPSQI, a combination of jSQI and wSQI, are

useful in detecting artifacts or non-physiological changes that occur within a few

beats, gradual ABP distortions that occur over the span of tens of minutes are not

recognized.

5.2 Areas for future work

Various methods have been developed to calibrate CO estimates studied in this thesis.

While the global calibration method is applicable for calibrating for a retrospective

analysis, a first point calibration or online calibration method can be explored for

its effect on estimation error. If a larger data set is available, the thermodilution

points can be split into two sets: a training set on which the TCOs can be used for

calibrating estimated cardiac output, and a test set on which to evaluate the CO

estimation error on.

Other measures of clinical utility can be examined using an approach similar to

that used to correlate vasoactive medication with estimated resistance. A similar

analysis of inotropic agents can be performed to determine the relationship between
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medication level and cardiac output. An interesting area of research would be to

see how well the cardiac output estimates, along with other clinically available data,

predicts septic shock, hemorrhage, or cardiogenic shock.

However, without an additional signal quality index to detect slow-changing ar-

tifacts in the arterial blood pressure waveform, the usefulness of the CO estimation

procedure used in this thesis is limited. The damping detector proposed in Chapter 4

is one step towards a more reliable CO estimate, but other types of gradually chang-

ing forms of non-physiological blood pressure waveforms need to be accounted for in

any reliable CO estimate. However, it is likely that CO estimates will have to be

back-corrected retrospectively when flush artifacts are detected. This constraint may

prove unacceptable and clinical practice may require an independent blood pressure

observation, such as that derived from a cuff. When such independent observations

are compared to invasive data, large continued differences may prompt clinical teams

to perform flush tests or adjust the catheter or transducer position, thereby improving

the overall quality of data.
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