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Abstract

Intensive Care Unit (ICU) false alarm rates can be as

high as 86%, leading to a desensitization of the clinical at-

tending staff, slowing of response times and even ignoring

true alarms. False alarms are commonly caused by single

channel artifacts and could be avoided if information from

other independent signals were fused to form a more robust

hypothesis of the etiology of the alarm. We used a stan-

dard multi-parameter ICU database (PhysioNet’s MIMIC

DB) to investigate the frequency of false critical (or ‘life-

threatening’) arrhythmia alarms produced by a commer-

cial ICU monitoring system. Multiple expert reviews of

the alarms were made using all the relevant files in the

MIMIC DB (a total of 21 subjects and 800 hours of wave-

form data). We found that 25% of the 89 life-threatening

alarms were considered false. We then implemented an

algorithm to suppress false alarms, using information de-

rived from the arterial blood pressure signal. This simple

yet robust strategy was successful in suppressing all false

alarms, without suppressing any true alarms.

1. Introduction

False alarms in the Intensive Care Unit (ICU) lead to a

disruption of care, impacting both the patient and the clin-

ical staff. ICU alarms produce sound intensities above 80

dB that can lead to sleep deprivation [1, 2] and stress for

both patients and staff [3, 4]. More importantly, repeti-

tive false alarms can lead to a desensitization of the clini-

cal staff, confusion, and slowing of response times [1]. In

such circumstances, true alarms might be ignored, leading

to decreased quality of care [5, 6]. ICU false alarm rates

as high as 86% have been reported [7], and between 6%

and 40% of ICU alarms have been shown to be true but

insignificant. Only 2% to 9% of alarms have been found to

be clinically significant [8]. Single channel artifacts are of-

ten the cause of false electrocardiogram (ECG) alarms and

they could be avoided if information from other indepen-

dent signals were fused to form a more robust hypothesis

of the etiology of the alarm. We hypothesized that the use

of a highly correlated signal, such as a pulsatile waveform,

to corroborate the alarm category, would allow the sup-

pression of a significant number of false ECG alarms in the

ICU. The arterial blood pressure signal (ABP) is perhaps

the least noisy pressure signal commonly available, and it

is unlikely to contain ECG-related artifacts. In this study,

we used a standard multi-parameter ICU database (Phy-

sioNet’s MIMIC DB) [9] to investigate the frequency of

false life-threatening arrhythmia alarms generated by com-

mercial bedside monitors (Hewlett Packard CMS Merlin)

in a real ICU setting. A system for suppressing the false

life-threatening ECG alarms was then developed, using in-

formation derived from the ABP waveform.

2. Methods

2.1. Data sources and alarm definitions

A multi-parameter database (MIMIC DB [9]), consist-

ing of over 104 patient-days of real-time signals and ac-

companying annotations, was chosen for algorithm devel-

opment. Many of the subjects in this database have si-

multaneous ECG waveforms, ABP waveforms (sampled at

125Hz with 12-bit resolution) and alarm annotations. The

alarms of interest in this project are those classified as life-

threatening or critical arrhythmia alarms and are defined

to be asystole, extreme bradycardia, extreme tachycar-

dia, ventricular tachycardia (VT), and ventricular fibrilla-

tion/tachycardia (VF/VT). The definitions of these alarms

were established by the manufacturer. The asystole alarm

is triggered by a default asystolic pause of 4 sec, that is

user-adjustable between 2.5-4 sec. Extreme bradycardia is

defined to be a heart rate (HR) below 40 bpm. Extreme

tachycardia is defined to be a HR above a default of 140

bpm, adjustable up to 200 bpm for adults. VT is defined

as a run of ventricular beats at a rate of at least 100 bpm

lasting 5 or more beats. VF/VT is defined as a fibrillatory

waveform lasting for at least 3 sec.

We identified a subset of 21 records (totaling 800 mon-

itored hours) that contained simultaneous ECG and ABP

waveforms containing a total of 89 critical arrhythmia

alarms. Each machine-generated critical alarm was care-

fully reviewed manually and assessed as true or false by

two sequential reviewers. The critical alarm distribution is

summarized in Table 1 and discussed in §3.
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Table 1. Distribution of the critical arrhythmia alarm types

of the MIMIC DB. This dataset is used as the Gold Stan-

dard for performance testing of the algorithm.

Alarm Type True False Total

Asystole 7 3 10

Bradycardia 7 4 11

Tachycardia 32 14 46

VT 15 1 16

VF/VT 6 0 6

Total 67 22 89

Figure 1. The flowchart outlines the major logical steps of

the FA reduction algorithm.

2.2. Algorithm implementation

The proposed algorithm uses ABP waveform informa-

tion to determine whether an ECG-based critical alarm

should be suppressed or accepted. The algorithm may be

used as a post-processing module to current ICU monitor-

ing systems to filter critical alarm output in real-time.

The flow of the FA algorithm logic is depicted in Figure

1. At the onset of a critical ECG alarm, the ABP wave-

form is extracted over a 30 sec analysis window (looking

back in time from the onset of the alarm). It should be

noted that repeated occurrences of an alarm triggered by a

single event were not used in this study, since this would

artificially inflate the algorithm’s performance. An inde-

pendent SAI (signal abnormality index) algorithm detailed

in [10] is used to determine whether the ABP segment is

of high enough quality to yield useful morphological infor-

mation to adjudicate the alarm. The heart rate is then ex-

tracted from the ABP signal and the logic then branches,

according to whether the alarm is rate related (bradycar-

dia/tachycardia) or not. If the alarm is not rate related,

then further morphological analysis is performed to deter-

mine if the alarm is commensurate with the observed ABP

waveform. The following sections provide further details

concerning each of these processing units.

2.2.1. ABP waveform normality evaluation

A binary beat-by-beat signal abnormality index (SAI)

is generated using a set of thresholds and heuristics

based on noise level, physiologic ranges and beat to beat

variability[10]. We, use the boolean inverse of the SAI, the

SNI (signal normality index), which has a value of ’1’ for

a normal beat and ’0’ for an anomalous beat. By comput-

ing the mean SNI (mSNI) over a 30 sec analysis window,

a measure of the normality of the ABP segment is gener-

ated, which quantifies the fraction of normal beats within

the analysis window. If mSNI < SNIHR (a given threshold

< 1), we judge the ABP segment morphology to be ‘abnor-

mal’ and accept the alarm, since useful information cannot

be extracted from the ABP signal. If mSNI ≥ SNIHR, fur-

ther tests can be performed. The subsequent step in the

FA algorithm verifies if the alarm is HR-related (asystole,

bradycardia or tachycardia) or ventricular-related (VT or

VT/VF).

2.2.2. Asystole processing

For an asystole alarm, the ABP waveform is used to

compute (a) the longest beat-to-beat interval within the

analysis window (in case the asystole resolves itself within

the window) and (b) the time between the last beat onset

and the end of the analysis window (in case an asystole is

sustained beyond the end of the analysis window). If the

largest of the latter two values is greater than 3 seconds, an

asystole alarm is accepted.

2.2.3. Bradycardia processing

The ABP waveform is used to obtain the 10 largest beat-

to-beat intervals within the analysis window. The mean

HR is computed based on these 10 candidates. If the mean

HR is below the monitor’s default threshold, HRMIN =

40 bpm (or any other clinician-adjusted bradycardia HR

threshold), a bradycardia alarm is accepted.

2.2.4. Tachycardia processing

The tachycardia processing stage is similar to the one

for bradycardia. The 10 shortest beat-to-beat intervals are

obtained from the ABP signal. The mean HR is com-

puted based on those 10 candidates. If the calculated mean

HR exceeds the monitor’s default threshold, HRMAX =

140 bpm (or any other clinician-adjusted tachycardia HR

threshold), a tachycardia alarm is accepted.
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2.2.5. Ventricular tachycardia and fibrilla-

tion/tachycardia

If the alarm is ventricular-related (i.e., VT or VF/VT),

the presence of any one of the following two conditions

is sufficient to accept the alarm: (a) the ABP segment is

not deemed ‘normal’ at a more stringent level, mSNI <

SNIVENT (SNIVENT > SNIHR, since, in comparison

to the HR-related alarms, a smaller number of ventricu-

lar beats could be corrupted in the analysis window) or

(b) the ABP waveform is tachycardic, i.e. the mean HR

computed based on the 10 shortest beat-to-beat-intervals

is greater than 100 bpm (manufacturer-defined VT thresh-

old). Such design is intended to avoid the possibility of

rejecting a true VT alarm where the HR is slightly tachy-

cardic (100-120 bpm) yet displaying an ABP waveform

without anomalous beats.
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Figure 2. Examples of a false VT alarm suppressed by

our algorithm (A), and a true VT alarm that was not sup-

pressed by our algorithm (B). Each plot consists of three

time series; an ECG, an ABP waveform and mSNI over

30 sec. The vertical dotted line indicates the alarm onset

and the horizontal dotted line indicates the threshold above

which the ABP signal is considered to be normal.

Table 2. Summary of FA reduction algorithm performance

True Alarm False Alarm

Accepted 67 0

Suppressed 0 22

3. Results

3.1. Human annotation

After expert human annotation of the MIMIC DB life-

threatening alarms, we found that 25% of the 89 arrhyth-

mia alarms were considered false (see table 1). Most of

the false critical alarms originate from HR disturbances

(i.e. asystole, bradycardia and tachycardia), representing

approximately one third of the total number of alarms is-

sued by the monitors. The abnormal ventricular-related FA

rate of the detected VT and VF/VT events is low, with only

one false VT alarm issued (a 6.25% false alarm rate) and

with no false VF/VT events.

3.2. Algorithm results

Figure 2 illustrates examples of (A) a false VT alarm

suppressed by our algorithm, and (B) a true VT alarm that

was not suppressed by our algorithm. Each subplot con-

sists of three time series; an ECG, an ABP waveform and

an mSNI (mean SNI over 30 seconds). The dotted vertical

line indicates the activation of an alarm by the monitoring

equipment, triggered by artifact in Figure 2.A and by true

VT in Figure 2.B. Note that in Figure 2.A, the mSNI of

the ABP waveform remains high and so we know that it is

unlikely that the ECG is manifesting an abnormal (ventric-

ular) rhythm. The alarm is therefore suppressed. In Figure

2.B, mSNI drops below our optimized threshold (mSNI <

0.95), the horizontal dotted line in the third plot. This in-

dicates that there is some abnormality in the ABP wave-

form either due to noise (so we cannot perform any further

tests), or because of the ventricular rhythm. Either way, we

cannot suppress the alarm.

The algorithm’s detection and rejection performance

was compared to the ’Gold Standard’ annotations, and the

results were tabulated in Table 2. The algorithm success-

fully rejects all false alarms (22/22) and correctly accepts

all true alarms (67/67), yielding a sensitivity of 100% and

a positive predictivity of 100%.

3.3. Sensitivity analysis

Given a relatively humble dataset of 89 alarms, it was

not deemed viable to separate the data into development

and test subsets. Instead, a sensitivity analysis was con-

ducted to quantify the robustness of our algorithm’s perfor-

mance to changes in its threshold values. This also helped

to ensure that the algorithm’s performance was not sub-

stantially dependent on the particular threshold values, and

to demonstrate that the thresholds were not over-tuned to

this data set.

The algorithm’s operating point is SNIHR = 0.8,

SNIVENT = 0.95, and analysis window length = 30 sec. In
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the analysis, each of the 3 thresholds (SNIHR, SNIVENT,

and analysis window length) was individually varied one

at a time around the operating point while maintaining the

other 2 constant.

The results of individually varying the SNIHR and

SNIVENT values from 0 to 1, and the analysis window

from 10 to 120 seconds are now summarized. Correct de-

tection with a sensitivity and positive predictivity of 100%

(i.e. FP = 0, FN = 0, and TP rate = 100%) occurs for an

SNIHR ranging between 0.70-0.86, an SNIVENT between

0.92-1.00, and analysis window length between 25-45 sec.

At low SNIHR values (< 0.70), the signal’s morphology

is more readily considered abnormal. Therefore, the al-

gorithm becomes more stringent and suppresses more true

alarms, thereby becoming extremely unsafe. On the other

hand, when SNIHR exceeds 0.86, the algorithm accepts

alarms more easily and increases the chances of issuing

a false alarm. At SNIVENT values below 0.92, the ABP

waveform’s morphology is more readily regarded as abnor-

mal and more true alarms are hence suppressed. Finally, by

varying the analysis window length, performance degrades

both below 25 and above 45 sec; more true alarms are sup-

pressed and more false alarms are accepted. A shorter time

window presents less data to make an accurate compu-

tation, whereas a longer window includes more data that

could be unrelated to the alarm. Therefore, a time window

of 30 sec was found to be a reasonable trade off in this

case.

4. Conclusions

Our results on human annotations of false alarms in the

MIMIC DB indicate that 25% of the critical ECG arrhyth-

mia alarms (asystole, bradycardia, tachycardia, VT, and

VF/VT) are false. Our subsequently constructed FA sup-

pression algorithm uses information from the ABP wave-

form to suppress critical ECG arrhythmia FAs. Our al-

gorithm compares favorably with the only other system

that has been publicly reported: GE Medical’s Intellirate,

which has been reported to reduce FAs by up to 50%,

with false asystole alarm suppression as high as 89%. Our

FA suppression algorithm presented in this paper has been

shown to suppress 100% of life-threatening false ECG ar-

rhythmia alarms in the ICU, over a wide range of thresh-

olds, on a publicly available database of 800 hours of ICU

data. Moreover, the algorithm did not suppress any true

alarms.

The human false/true alarm annotations, together with

the SNI values for each beat derived in this study will be

made publicly available through PhysioNet [11]. A limi-

tation of this pilot study is the fact that algorithm develop-

ment and evaluation were conducted using the same data.

Follow-on work will utilize the much larger MIMICII DB

[12], which has an order of magnitude more data and

alarms. Analysis of this new data will allow the testing

and development of this algorithm on a more varied and

representative set of waveform examples.

Acknowledgments

The authors gratefully acknowledge support from the

NIH/NBIB grant R01 EB001659.

References

[1] Chambrin M. Review: Alarms in the intensive care unit:

how can the number of false alarms be reduced? Critical

Care May 2001;5(4):184–188.

[2] Meyer T, Eveloff S, Bauer M, Schwartz W, Hill N, Millman

R. Adverse environmental conditions in the respiratory and

medical ICU settings. Chest 1994;105(4):1211–1216.

[3] Aaron J, Carlisle C, Carskadon M, Meyer T, Hill N, Mill-

man R. Environmental noise as a cause of sleep disrup-

tion in an intermediate respiratory care unit. Sleep 1996;

19:707–710.

[4] Cropp A, Woods L, Raney D, Bredle D. Name that tone.

The proliferation of alarms in the intensive care unit. Chest

1994;105(4):1217–1220.

[5] Donchin Y, Jacob S. The hostile environment of the in-

tensive care unit. Current Opinion in Critical Care August

2002;8(4):316–320.

[6] Imhoff M, Kuhls S. Alarm Algorithms in Critical Care

Monitoring. Anesth Analg 2006;102(5):1525–1537.

[7] Lawless S. Crying wolf: false alarms in a pediatric intensive

care unit. Crit Care Med Jun 1996;22(6):981–985.

[8] Tsien C, Fackler J. Poor Prognosis for Existing Moni-

tors in the Intensive Care Unit. Crit Care Med Apr 1997;

25(4):614–619.

[9] Moody GB, Mark RG. A database to support develop-

ment and evaluation of intelligent intensive care monitor-

ing. Computers in Cardiology 1996;23:657–660.

[10] Sun J, Reisner A, Mark R. A signal abnormality index for

arterial blood pressure waveforms. Computers in Cardiol-

ogy 1999;33.

[11] Mark R, Moody G. PhysioNet: the re-

search resource for complex physiologic sig-

nals: MIMIC; A Multiparameter Database.

http://www.physionet.org/physiobank/database/mimicdb/.

[12] Saeed M, Lieu C, Raber G, Mark R. MIMIC II: A massive

temporal ICU patient database to support research in intel-

ligent patient monitoring. In Comput. Cardiol. 2002. Los

Alamitos: IEEE Computer Society Press, 2002; 641–644.

Address for correspondence:

Gari D. Clifford

Harvard-MIT Division of Health Sciences & Technology

45 Carleton St.,

Cambridge MA 02139, / USA

gari@mit.edu

http://alum.mit.edu/www/gari/

832


