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Abstract
Despite the important advances achieved in the field of adult electrocardiography 
signal processing, the analysis of the non-invasive fetal electrocardiogram 
(NI-FECG) remains a challenge. Currently no gold standard database exists 
which provides labelled FECG QRS complexes (and other morphological 
parameters), and publications rely either on proprietary databases or a very 
limited set of data recorded from few (or more often, just one) individuals.
The PhysioNet/Computing in Cardiology Challenge 2013 enables to tackle 
some of these limitations by releasing a set of NI-FECG data publicly to 
the scientific community in order to evaluate signal processing techniques 
for NI-FECG extraction. The Challenge aim was to encourage development 
of accurate algorithms for locating QRS complexes and estimating the QT 
interval in non-invasive FECG signals. Using carefully reviewed reference 
QRS annotations and QT intervals as a gold standard, based on simultaneous 
direct FECG when possible, the Challenge was designed to measure and 
compare the performance of participants' algorithms objectively. Multiple 
challenge events were designed to test basic FHR estimation accuracy, as well 
as accuracy in measurement of inter-beat (RR) and QT intervals needed as a 
basis for derivation of other FECG features.

This editorial reviews the background issues, the design of the Challenge, 
the key achievements, and the follow-up research generated as a result of 
the Challenge, published in the concurrent special issue of Physiological 
Measurement.
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1. Introduction

Since the late 19th century, decelerations of fetal heart rate have been known to be associ-
ated with fetal distress. Intermittent observations of fetal heart sounds (auscultation) became 
standard clinical practice by the mid-20th century. The first fetal heart rate (FHR) monitors 
were developed more than 50  years ago, and became widely available by the mid-1970s. 
Continuous FHR monitoring was expected to result in dramatic reduction of undiagnosed 
fetal hypoxia, but disillusionment rapidly set in as studies showed that the outputs of FHR 
monitors were often unreliable and difficult to interpret, large increase rates of a painful and 
expensive cesarean section, higher prevalence of postnatal depression (Boyce and Todd 1992) 
and postoperative pain negatively affecting breastfeeding and infant care (Karlström et al 
2007). There were little evidence that reductions in adverse outcomes were attributable to the 
use of FHR monitors.

Improved accuracy in FHR estimation has been achieved through use of more sophisticated 
signal processing techniques applied to more reliable signals. These improvements, coupled 
with a better understanding of the limitations of fetal monitoring, have led to wider accept-
ance. However, there remains a great deal of room for improvement.

Electronic fetal monitoring techniques can be invasive or non-invasive with intermittent 
or continuous assessment; these techniques include fetal phonocardiography, Doppler ultra-
sound, cardiotocography (CTG), fetal magnetocardiography (FMCG) and fetal electrocar-
diography (FECG)—see table 1. At 20 weeks the heart can be heard without amplification 
(Sameni and Clifford 2010) and monitored by ultrasound (Peters et al 2001), the FECG and 
FMCG can be recorded from 20 weeks onward (Peters et al 2001)—figure 1. Doppler ultra-
sound is routinely used for FHR monitoring during pregnancy and delivery. However, it has 
not been demonstrated that ultrasound irradiation exposure was completely safe for the foetus 
(Barnett and Maulik 2001). The FECG can be recorded in two ways; through an electrode 
attached (screwed) to the fetal scalp while the cervix is dilated (i.e. during delivery) or by 
non-invasive electrodes placed on the mother’s abdomen- non-invasive FECG (NI-FECG).

The ECG allows for interpretation of the electrical activity of the heart far beyond just 
heart rate and heart rate variability. However morphological analysis of the FECG waveform 
is usually not performed in clinical practice, with exception of the STAN monitor (Neoventa 
Medical, Goteborg, Sweden), which uses an invasive scalp electrode. This electrode can only 
be placed at the very last stage of the pregnancy (antepartum) and has an associated small risk. 
It is therefore not routinely used. Moreover only one differential electrode is possible, thus the 
three dimensional electrical field emanating from the fetal heart is unavailable, and only sin-
gletons can be monitored. Conversely, the NI-FECG is non-invasive and can theoretically be 
performed at earlier stages of the pregnancy (although with a weaker field strength). However, 
the NI-FECG always manifests as a mixture of (significant) noise, fetal activity (from each 
fetus) and a much larger amplitude of maternal activity (figure 2(a)). The signals overlap in 
both the time (figure 2(a)) and frequency domains (figure 2(b)) and therefore accurate extrac-
tion and analysis of the FECG waveform is challenging.

The FECG was first observed more than a century ago (Cremer 1906). Despite significant 
advances in adult clinical electrocardiography, signal processing techniques and the potency 
of digital processors, few significant advances have been made in the extraction and analysis 
of NI-FECG. This is partly due to the relatively low signal-to-noise ratio (SNR) of the FECG 
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compared to the maternal ECG (MECG), caused by the various media between the fetal heart 
and the measuring electrodes, and the fact that the fetal heart is simply smaller. Moreover, 
there is a less complete clinical knowledge concerning fetal cardiac function and develop-
ment than for adult cardiology. Another significant barrier to the analysis of NI-FECG is the 
paucity of (public) gold standard databases with expert annotations and objective signals, such 
as independent measures of the FECG (through direct scalp electrodes), heart rate, ischemia, 
rhythm, etc.

The key features in fetal monitoring are FHR rhythm-related, and FECG morphology 
related (e.g. ST and QT changes). FHR can be used as an indicator of fetal distress (Van Geijn 
et al 1991). In medical practice 1-D Doppler ultrasound is usually used to measure the FHR, 
but this requires frequent repositioning of the ultrasound transducer and its accuracy is often 
well below that of the scalp electrode. Moreover, little progress has been made in the use of 
FHR to provide clinically actionable information. In contrast, some studies have shown that 
FECG morphology was promising in identifying actionable abnormalities. This includes the 
QT interval (Oudijk et al 2004), QRS morphology, and the ST segment (Clifford et al 2011). 
In particular, it is known that QT interval reacts to situations of stress and exercise. It has 
been shown that a significant shortening of the QT interval was associated with intrapartum 
hypoxia (resulting in metabolic acidosis) irrespectively of changes in FHR, whereas in normal 
labour these changes do not occur (Oudijk et al 2004).

The scalp ECG based STAN monitor provides a proxy measure (the T/R amplitude ratio) 
for the ST segment deviation. Recently the use of the STAN analyser together with com-
petency based training on fetal monitoring showed significant decrease in the number of 
cesarean at St George’s Maternity Unit while hypoxic ischaemic encephalopathy and early 

Table 1. Main methods for non-invasive electronic fetal monitoring. Main reference 
(Peters et al 2001).

Method System Gestational age Comments

CTG Cardiotography; ultrasound 
transducer and uterine 
contraction pressure-
sensitive transducer

⩾20 weeks –  contraction through pressure 
transducer

–  smoothed HR time series. Rather 
robust and reliable

–  no beat to beat data and cardiac 
function descriptor limited to HR

–  not passive; ultrasound 
irradiation

FMCG Fetal magnetocardiogram. 
Detection of the fetal heart’s 
magnetic field through 
SQUID sensors positioned 
near the maternal abdomen

⩾20 weeks – expensive
– requires skilled personnel
–  morphological analysis of the 

FMCG easier than NI-FECG 
because of higher SNR

–  no long term monitoring possible 
to date because of apparatus size/
coast etc.

NI-FECG Standard ECG electrodes 
with varying skin 
preparation methods

⩾20 weeks with 
dip from 28th to 
37th weeks

–  cheap
–  easy to handle
–  continuous monitoring possible
–  FHR and possibly morphological 

analysis
–low SNR
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Figure 1. Prenatal development time-line with key landmark with respect to fetal mon-
itoring. At 20 weeks the heart can be heard without amplification (Sameni and Clifford 
2010), and monitored using Doppler ultrasound (Peters et al 2001), the Non invasive 
FECG (NI-FECG) and FMCG can be recorded from 20 weeks onward (Peters et al 
2001) but the vernix caseosa forms around 28th–32nd weeks and dissolves in 37th–38th 
weeks in normal pregnancies (Stinstra 2001) limiting NI-FECG effectiveness recording 
during this period.

Figure 2. Frequency and temporal overlap of the MECG and FECG signals. (a) From 
top to bottom: example of maternal chest ECG, fetal scalp ECG and abdominal ECG 
(AECG). Note that the AECG contains a mixture of both MECG and FECG and that 
some fetal QRS are overlapping with the maternal QRS—temporal overlap. To produce 
(a) a notch filter at 60 Hz was used to make the FECG visible on the abdominal chan-
nel. (b) Power spectral density distribution (Burg method, order 20) for 5 min of scalp 
electrode ECG and 5 min of adult ECG. Notice the frequency overlap between the adult 
and fetal ECG signals particularly in the frequency band of the QRS.
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neonatal death decreased slightly (Chandraharan et al 2013). However a recent Cochrane 
study (Neilson 2006) reviewed six trials aiming at comparing the effect of the analysis of 
scalp FECG waveforms during labour with alternative methods used for fetal monitoring and 
showed that no significant difference to primary outcomes were achieved using the STAN ST 
proxy (evaluated on five trials using different version of the STAN monitor, 15 338 women). 
This suggests that whether the STAN proxy measure for computing ST is not accurate enough 
or that ST measure does not provide significant information to improve fetal monitoring.

To date there are only two NI-FECG devices known to the authors that have obtained FDA 
clearance and regularly published papers on NI-FECG analysis: the Monica AN24 monitor 
(Monica Healthcare, Nottingham, UK) and the MERIDIAN monitor from MindChild Medical 
(North Andover, MA). Both monitors have proved to be accurate in detecting the FHR and 
early work on extracting morphological information has been published (Behar et al 2014a, 
Clifford et al 2011). These recent advances in the field are very exciting. However, these stud-
ies are still limited in number and population size, and the positive outcomes of these devices 
on fetal monitoring are yet to be established.

Until the PhysioNet/Computing in Cardiology Challenge 2013 (the Challenge) there 
were three public NI-FECG databases: (i) the Daisy database constituted of 8 channels (4 
abdominal and 3 thoracic) and the abdominal ECG (AECG) lasting for 10  s and using a 
sampling frequency (fs) of 250 Hz. (ii) The Non-Invasive Fetal Electrocardiogram Database 
(NIFECGDB), available on PhysioNet (Goldberger et al 2000) fs = 1 kHz. 55 multichan-
nel abdominal ECG recordings taken from a single subject (21 to 40 weeks of gestation), 
fs = 1 kHz, without reference annotations. (iii) Abdominal and Direct Fetal Electrocardiogram 
Database (ADFECGDB), available on PhysioNet (Goldberger et al 2000) fs = 250 Hz with 
5  min of recordings (4 abdominal channels) from 5 women in labour (38 to 41 weeks of 
gestation), fs = 1 kHz, scalp ECG available for reference. It is important to note that these 
three databases are low dimensional (number of recordings, number of abdominal channels 
available) and few data have any reference annotations, and those that do, only have FQRS 
complex location from a single annotator.

In summary NI-FECG has the potential to provide:

2012))
2008)) & fetal position

The most accurate method for measuring FHR is direct fetal electrocardiographic (FECG) 
monitoring using a fetal scalp electrode. This is possible only in labour, however, and is not 
common in current clinical practice, except in deliveries considered to be high risk, because 
of the associated risks of the scalp electrode usage. Non-invasive FECG monitoring makes 
use of electrodes placed on the mother’s abdomen. This method can be used throughout the 
second half of pregnancy and is of negligible risk, but it is often difficult to detect the fetal 
QRS complexes in ECG signals obtained in this way, since the maternal ECG is usually of 
greater amplitude in them.

2. Overview of the challenge 2013

The key questions of the Challenge were: (1) Can accurate FHR measurements be performed 
using a set of non-invasive abdominal ECG electrodes? and (2) Can an accurate fetal QT mea-
sure be performed in an automated way using the extracted signal? Despite many interesting 
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theoretical frameworks, the robustness of most of the methods for NI-FECG extraction in the 
literature to date has not been sufficiently quantitatively evaluated. This is due to two main fac-
tors : (i) the lack of gold standard databases with expert annotations and (ii) the methodology 
for assessing the algorithms. The Challenge attempts to address these limitations by making 
publicly available a set of FECG data to the scientific community for evaluation of signal pro-
cessing techniques, as well as a scoring system for evaluating the outcomes of these methods.

The data sets used for the Challenge were obtained from five different sources, table 2, 
yielding a total of 447 records. Two out of the five databases have been previously made 
public (Goldberger et al 2000, Matonia et al 2006), and one database was artificially gen-
erated using an extended version (Behar et al 2014b) of the dipole model described in  
Sameni et al (2007). The other two databases were donated to PhysioNet for this Challenge 
(the Scalp FECG Database was not made public and used only for scoring open source algo-
rithms in Set C described below). The gold standard used for the initial stage of the Challenge 
consisted of reference annotations from the data sets (for the non-invasive data sets, the anno-
tations were obtained from FECG QRS estimates derived manually or through additional 
maternal ECG leads that were not available to competitors). The reference for the second 
and final stage of the Challenge was obtained by using a Bayesian crowd-sourcing approach  
(Zhu et al., 2013, 2014) to combine the original reference annotations with the annotations 
from the all the open-source entries for the first stage. A subset of both the initial and final ref-
erence annotations were manually verified by the Challenge organisers, although some minor 
errors in annotations persisted.

All records were formatted to have a 1 kHz sampling frequency, one minute duration, and 
four channels of non-invasive abdominal maternal ECG leads. The databases in table 2 were 
re-arranged into three data sets for the Challenge:

The Challenge scores relative to the different events were defined as follows; scores for 
the FHR based events (E1 and E4) were computed from the differences between matched 
reference and test FHR measurements at 12 instances (i.e. one every 5 s). Scores for the RR 
events (E2 and E5) were computed from the differences between matched reference and test 
RR intervals. The score for the QT measure event (E3) was calculated from the differences 
between matching reference and test QT intervals. The purpose of the RR events was to assess 
whether an algorithm was able to extract the absolute FQRS position, i.e. the position of the 
fetal R-peak on the signal with respect to the reference fiducial markers. The purpose of the 
FHR events was to assess the performance of an algorithm for providing clinically relevant 
information, regardless of where the fetal R-peaks were located (so the FQRS time series 
could be highly smoothed before computing the FHR). As such, the RR and FHR scores rep-
resented two distinct events even if they ended highly correlated as the results of the Challenge 

Table 2. FECG database reference.

Database name N records

ADFECGDB (Matonia et al 2006) 25
Simulated FECGs (Behar et al 2014b) 20
NIFECGDB (Goldberger et al 2000) 14
Non-invasive FECG 340
Scalp FECG database 48
Total 447
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showed (Silva et al 2013). The Challenge was divided into three phases corresponding to three 
time periods where participants were allowed to submit a certain number of entries (phase 
1: from 25-04-2013 to 01-06-2013, 3 entries; phase 2: from 01-06-2013 to 25-08-2013, five 
entries; phase 3: from 25-08-2013 to 05-09-2013, 1 entry).

The participants of the Challenge were expected to use set A for the training of their algo-
rithms while sets B and C were used by the Challenge organisers for scoring. It was not pos-
sible to score one record in Set A and two in Set B due to some errors in the corresponding 
reference annotations. The training data set A, and the records for set B, are publicly avail-
able at PhysioNet. The Challenge was organised into five events (E): a QT estimation event, 
and four time series estimation which are the focus of this special issue. The four time series 
events were defined as presented in table 3: events E1 and E2 were only considered for the 
open source entries (evaluated on set C); events E4 and E5 were considered for open or closed 
source entries.

E1 and E2 were scored on a private PhysioNet server running the participant’s algorithm on set 
C. E4 and E5 were automatically scored on PhysioNet’s web server by comparing the user’s sub-
mitted annotation file with the expert annotations. The web based scoring interface in PhysioNet 
remains open for those wishing to compare their results with those from the official Challenge on 
events 4 and 5. The scoring methods for the three different FECG estimation tasks are described 
in table 3. Records that were not annotated by the competitors were given a very high penalty 
value. The WaveForm DataBase (WFDB) software package version 10.5.19 was used in the scor-
ing of the events related to FHR and RR Series. The final score for a given event was determined 
by the average score of all the records within the event’s data set. The source code used for all 
scoring remains available at http://physionet/chalenge/2013 and the source code from the open-
source competitors can be found at http://physionet.org/challenge/2013/sources/.

An open source sample entry was provided to the participants by the organisers of the 
Challenge. The competitors were welcome to either improve the sample entry or generate 
their entry following the same interface as of the sample entry. A total of 53 international 
teams participated in the Challenge yielding 208 sets of annotations and 93 open source 
entries, with the vast majority outperforming the sample entry (figure 3). The top scores for 
all the events (E) were: 179.439 (beats min−1)2 (E1), 20.793 ms (E2), 18.083 (beats min−1)2 
(E4), and 4.337 ms (E5). Results presented at the Computing in Cardiology conference 2013 
are presented in Table 4. Following the Challenge some participants further refined their algo-
rithms and their updated scores reported in this special issue are summarised in Table 5. Note 
that only the scores from the participants who submitted a follow-up paper in this special issue 
are listed in the tables.

3. Review of key algorithms in the challenge

A large number algorithms for FHR and RR series estimation were proposed in the Challenge. 
The aim of this section is to expose several of the different signal processing techniques that 
lead to successful fetal ECG estimation. Other algorithms also obtained good scores at the 

Table 3. Scoring methods for the records of the Challenge. E stands for event.

Estimation task Scoring method Units Event

FHR Series Beat by beat classification 
error

(beats min−1)2 E1, E4

RR Series Average root square error milliseconds E2, E5
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Challenge, however, due to obvious space limitations, it is not practical to mention all of them 
here. The techniques presented at the Challenge were unique and original, but in general each 
had a five step approach as follows:

 1. Pre-processing
 2. Estimation of maternal component
 3. Removal of maternal component
 4. Estimation of FHR and RR time series
 5. Post-processing

The first step generally consists of pre-processing the raw waveforms. In this stage noise, 
artifacts, baseline wandering (i.e. trends), and power-line interference are removed through 
the use of filters, averaging, or median filtering. In some cases, an augmented set of channels 
is also obtained through algebraic manipulation of the existing ones, for instance, by subtract-
ing pairs of signals or inverting individual ones, thus creating a differential signal. At the 
second stage, an estimate of the maternal signal is obtained by using a form of decomposition, 
filtering, template generation, or a combination of these three. The two most common forms 
of subspace decomposition used were Independent Component Analysis (ICA) and Singular 
Value Decomposition (SVD). For approaches that used a maternal template, the template is 

Table 4. Results presented at the Computing in Cardiology conference 2013 for events 
1-5 (E1-E5) for all the papers presented in this special issue. NA: Not Available,  because 
the corresponding participants did not entered the open source events E1-E2. E1 and E4 
in bpm2 and E2, E5 in ms.

Participants/Events E1 E2 E4 E5

Andreotti et al (2014) NA NA 18.1 4.3
Behar et al (2013) (non-official) 179.4 20.8 29.6 4.7
Haghpanahi and Borkholder (2013) 6298.1 159.9 50.1 9.1
Varanini et al (2013) 187.1 21.0 34.0 5.1
Dessì et al (2013) 684.2 48.0 639.5 23.8
Lipponen and Tarvainen (2013) NA NA 28.9 4.8
Di Maria et al (2013) NA NA 223.2 19.3
Liu and Li (2013) 2782.3 81.7 264.9 9.0
Lukos̃evic∼ius and Marozas (2013) NA NA 66.3 8.2
Rodrigues (2013) 278.8 28.2 124.8 14.4
Christov et al (2013) NA NA 285.1 20.0
Almeida et al (2013) NA NA 521.4 33.0

Table 5. Challenge results for the algorithms presented in this special issue i.e. consid-
ering further development after the Challenge deadline. NA: Not Available. E1 and E4 
in bpm2 and E2, E5 in ms.

Participants/Events E1 E2 E4 E5

Andreotti et al (2013) NA NA 15.1 3.3
Behar et al (2014c) 179.4 20.8 29.6 4.7
Haghpanahi and Borkholder (2014) NA NA 50.1 9.1
Varanini et al (2014) 187.0 21.0 34.0 5.1
Dessì et al (2014) 281.1 25.93 134.5 12.4
Lipponen and Tarvainen (2014) NA NA 28.9 4.8
Di Maria et al (2014) NA NA 142.7 19.9
Liu and Li (2014) NA NA 47.5 7.6
Lukos̃evic∼ius and Marozas (2014) NA NA 66.3 8.2
Rodrigues (2014) 278.8 28.2 124.8 14.4
Christov et al (2014) NA NA 305.7 23.1
Almeida et al (2014) NA NA 513.1 35.3
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usually estimated by averaging detected MQRS across space (i.e. channels) and/or time, with 
the Pam Tompkins algorithm being a popular choice for MQRS detection (Pan and Tompkins 
1985). Additionally, an estimated measure of signal quality can be used to weight the channels 
during the averaging process. In some cases, the temporal template is further decomposed into 
set of parameters through curve fitting. At the third stage, the maternal component is removed 
from the waveforms through a combination of one or more of the following techniques: sub-
space reconstruction, maternal template subtraction (signal cancelling), filtering, and/or asyn-
chronous temporal windowing (temporal gating). The subspace reconstruction (typically done 
with ICA or SVD) is performed by setting the components of non-fetal subspaces to zero. 
Signal subtraction using the estimated maternal templates can be performed statically or adap-
tively. Adaptive methods tend to track changes in curved-fitted parameters or use of adaptive 
filters such the Kalman and Least Mean Square (LMS) filters. After the maternal component 
has been attenuated in the third stage, the fourth step is to estimate the FQRS. The FQRS 
estimation can be performed through RS slope and R amplitude threshold detection, or modi-
fication of any of the existing adult QRS detection techniques. In some algorithms, the fourth 
stage is also accompanied by the merging of QRS annotations from the different channels and/
or different QRS detection algorithms (for example, using median voting). The fifth and final 
step (applied only by some of the competitors) is to constrain the estimated FHR and RR time 
series through physiological or statistical limits based on heuristics.

As expected, technical challenges and limitations exist in each of the five steps described 
above. At the pre-processing level, we have the task of designing band-pass and notch fil-
ters that will maximally attenuate noise without significantly distorting either the maternal or 
fetal ECG components. Estimation and removal of the maternal component, (the second and 
third steps), faces even harder challenges. Algorithms that use a subspace decomposition and 
 reconstruction may make the following implicit assumptions: (a) the number of signal sources 

Figure 3. Scatter plot of the scores for the Challenge (best scores are in the lower left 
corner). Scores for set C and B are marked in blue and red, respectively. The score for 
the sample entry is highlighted in green.
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are fixed, discrete, and less than or equal to the number of recorded channels, (b) the subspace 
representation is stationary, (c) the sources are uncorrelated, (d) the maternal signal has a high 
signal-to-noise ratio and spans one or more of the dominant spaces (with maternal P, QRS, 
and T waves possibly projecting into separate spaces). In some cases, the assumption that the 
data dimension space is larger than the number of independent sources can be resolved by pre-
processing the data (via filtering or cancellation, for example). Alternative methods that use 
maternal template cancellation instead of subspace decomposition/reconstruction also make 
assumptions. Some of the key assumption of the maternal template cancellation are: (a) the 
maternal component is uncorrelated with the fetal component, (b) the relationship between 
the ECG leads are stationary (or short-term stationary) and ergodic, (c) the maternal and fetal 
wave morphology are either constant, have slow trackable changes, or with no ectopic beats. 
It was observed that some of these assumptions did not hold for the Challenge data (Di Maria 
et al 2014), for instance, remarks that the MQRS detection is suboptimal if limited to always 
the first principal component.

The estimation of fetal heart rate and RR series performed by Andreotti et al (2013) 
consisted of five major stages. The first was a pre-processing stage to remove baseline 
wander, muscle artifact, and power line interference through zero-phase FIR filtering. In the 
second stage, the MECG was then estimated through a process that begins with Independent 
Component Analysis (ICA) to generated pseudo-channels. A QRS algorithm was run in all 
of these channels, and a best channel was selected by comparing the individual channels with 
a Gaussian kernel based QRS agreement of all channels. The chosen optimal channel was 
then used to generate a template MQRS for MQRS detection. In some instances, depend-
ent on the MQRS amplitude, the original four channels were subtracted from each other 
to further generate an augmented set of eight channels. At the third stage, the MQRS was 
removed from the waveforms using two different approaches: Extended Kalman Filtering 
based on Sameni et al (2005), and maternal template adaptation. The Extended Kalman 
Filtering approach was based on a non-linear system model of the averaged maternal beat 
and the inclusion of an innovation process. On the other hand, the MECG template adapta-
tion sought to segment the QRS complex into three distinct sections with whose width and 
heights were tracked and allowed to vary (the heights of these components were limited to 
a maximum range in order to avoid interfering with any superimposed FECG). The fourth 
major stage consisted of FQRS detection. The FQRS detection was treated as an optimisa-
tion problem in which fetal beat morphology and beat-to-beat interval consistencies were 
part of the cost function. Thus, simulated annealing was used as the optimisation tool, with 
independent FQRS annotations of processed channels as the input. The fifth and final stage 
of the Andreotti et al (2013) algorithm sought to correct, or constraint, the estimated FHR 
and RR time series. Among the key corrections were the removal of intervals in the esti-
mated time series that were shorter than 300 ms and heart rates changes greater than 70 ms. 
The authors remark that although the maternal template adaptation yielded better results 
(less attenuation of the fetal complexes), the Extended Kalman Filtering approach had a 
significant potential for improvement.

Another proposed algorithm that performed well in the data set was that of Lipponen and 
Tarvainen (2013). The pre processing was performed with a 6th order Butterworth high-pass 
filter (cut-off at 2 Hz) and elimination of the 50 Hz spectral Fourier component. An extra set of 
channels was then obtained through subtraction of the original channels. The MECG was esti-
mated and eliminated from the waveforms in three steps: (a) MQRS were detected in all chan-
nels using (Pan and Tompkins 1985), (b) maternal Q, R, S, P and T wavelets for each epoch 
were then stacked to generate 5 measurement matrix from which eigen-decompositions were 
obtained, (c) the individual epochs were then filtered by linearly combining the eigenvectors 
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with the top six eigenvalues for the QRS wavelets zeroed, and the top four eigenvalues for 
the P and T wavelets zeroed. Thus MECG removal process assumed that the FECG and noise 
components were not dominant in the space spanned by the principal eigenvectors. The fetal 
HR and RR time was estimated in four major steps. First, each channel was normalised by 
their signal quality factor, estimated by passing the channel’s envelope through a 100 ms mov-
ing average. At the second step, 20 QRS complexes were detected from the largest peaks that 
were generated by squaring the waveforms and their channel’s sum. The second step was 
followed by obtaining channel specific FQRS templates were from the average of these 20 
locations. In fourth and final step, the estimated time FHR and RR series were calculated by 
summing the correlation of the channels with their respective templates and passing them 
through a 30 ms moving average filter.

The algorithm proposed by Varanini et al (2013) was also among one the top performers. The 
algorithm had four pre-processing key steps: (1) sample replacement if a signal’s sample was 
higher than a threshold value based on a 60 ms median filter, (2) the channels were then low 
pass filtered using a first order Butterworth filter with cut off at 3.17 Hz, (3) a detrended signal 
was then obtained by subtracting the filtered signal of step 2 with the signal from step 1 and 
passing the difference through a 260 ms median filter (4) finally, a notch filter was applied if a 
power line interference was detected (the first 3 harmonics were also removed in similar man-
ner). The MECG was estimated through Independent Component Analysis (ICA), with FastICA 
as the choice software ICA. A QRS detector was then applied on a band pass filtered version of 
the major independent components. The maternal beats were then gated in time, and a Singular 
Value Decomposition (SVD) was then used to model the maternal beat from the first 3 largest 
singular values. The MECG was then removed from the data by subtracting the MECG SVD 
model from the signals. The final stage of fetal estimation was similar to the estimation process 
of the maternal signals. The fetal signal was first enhanced through ICA and two QRS detectors 
were then applied in forward and backward directions. The estimated annotations were then 
constrained to be smooth by having small mean absolute values in the first derivative, second 
derivatives, and in the number of fetal QRSs that matched with maternal QRSs.

The algorithm, (Podziemski and Gieratowski 2013), had a unique approach. The first 
pre processing stage was similar to other approaches (augmenting channels by inverting 
them, notch filtering, and median filtering). The second stage, however, was unique in that it 
attempted to estimate the FHR prior to MECG removal. The FHR was done by first detecting 
FQRS from threshold detection on RS slope and amplitudes. The thresholds were selected 
heuristically from the training set and allowed to change adaptively so that individual RR 
intervals were within 75 ms of the mean. An average channel was generated from the two 
channels that had the best FHR pair-wise agreement. The maternal ECG was only removed 
in the third stage. In this third stage, the MQRS was detected using the same RS slope and 
amplitude technique to detect the FQRS. A maternal MQRS template was then estimated 
from the detected MQRSs and subtracted from the baseline signal from stage 1. A second set 
of FQRS was then detected from this residue signal. A covariance signal was then estimated 
from the first set of FQRS detected on stage 2 and the second set of FQRSs detected on the 
residual signal. This covariance signal was multiplied with the residual signal and used in a 
final fetal QRS detection attempt (re-using the RS slope and amplitude techniques). The goal 
of the final fetal QRS detection pass was to find fetal beats that were potentially missed due to 
the maternal ECG interference. Finally, a pre-processing stage consisted in removal of beats 
that were too short to be physiologically possible, and rechecking for missed beats with an 
adaptive threshold where the estimated intervals were too long.

The final example of algorithm discussed in this section is the approach described in Behar 
et al (2013), which obtained top scores in all of the events in the Challenge. The pre-processing 
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stage of this algorithm consisted of high-pass and notch filtering. The authors note that selec-
tion of a high cut-off frequency for the high-pass filtering, such as 10 Hz, led to an improved 
result in detection, due to the removal of the large maternal P and T wave components. The 
maternal ECG was estimated by first applying QRS detectors (based modified version of Pan 
and Tompkins algorithm), followed by the fusion of several different techniques of source sep-
aration (including principal component analysis, template subtraction, and ICA). Detection of 
the FQRS waveforms was then performed by a modified of the Pan and Tompkins algorithm 
on all the channels. A best FQRS channel was then selected based on the number of occur-
rences where the instantaneous heart rate variability was greater than 30 bpm. The final stage 
consisted of post-processing the fetal HR and RR series by smoothing the time series. For 
cases where the FQRS was considered undetectable, a constant time series at 143 bpm or at its 
estimated dominant mode, was generated. The authors also used a different scoring function 
from that of the Challenge for optimising their algorithm. The authors choosed the F1 statistic 
(harmonic mean) to evenly balance the performance in terms of positive predictive value and 
sensitivity of the detectors.

4. Review of articles in the special issue

A total of thirteen articles were reviewed and revised in time to be accepted for this special 
issue. All authors had originally entered the Challenge, and most submitted updated versions 
of their algorithms, which should be made available by the authors through their open source 
licenses. The articles in this issue fall into three general categories based upon their signal 
processing approaches; temporal, spatial, and frequency (or time-frequency) approaches. 
We have therefore attempted to group the articles together and present them in this order. 
However, several articles combine multiple of these approaches to improve the heart rate 
extraction and do not neatly fall into a single category.

This special issue begins (after this editorial) with Behar et al's article describing the 
NI-FECG simulator that was developed for the Challenge (Behar et al 2014b). By con-
structing a realistic mixing model, with non-stationary effects from breathing and other 
motion, the training data for the Challenge was enriched with examples that had com-
pletely known source signals. By making this code available to the public, it is possible to 
stress test fetal analysis algorithms in unusual and pathological conditions (such as mater-
nal heart rate dipping below the fetal heart rate) which despite seldom, could have adverse 
clinical consequences if missed. 

Andreotti et al (2014) won events 2 and 5. The authors used kernel density estimation 
for fusing detection algorithms on the different channels for MQRS detection. The use of 
differential channels to augment the set of the four abdominal channels was also studied. 
Template adaption and an extended Kalman smoother for removing the maternal contri-
bution were employed. An evolutionary algorithm was used in order to correct for FQRS 
detection, where weights were chosen between signal periodicity and signal morphology. 
ICA was only used for MQRS detection but all the processing for extracting of the FECG 
and detecting the FQRS was performed in the time domain using temporal methods on the 
available abdominal channels and possible differentials. The authors also used a 470 min 
private dataset recorded from 10 pregnant women to further evaluate their extraction algo-
rithms. The authors reported that the TS approach performed better than the Kalman filter 
approach on the Challenge dataset but lower on their additional private dataset.

Behar et al (2014c), unofficial entry scored first for event 1 and 4, second for event 3 
and third and second for event 2 and 5. Although unofficial, because they also helped create 
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the competition, the authors actually were blinded to the validation data, and so were at no 
advantage, apart form having spent more time analysing FECG than most in the competition. 
Their article presents a comprehensive review of classical methods used in the field for this 
application (template subtraction, blind source separation and Kalman filter approaches). 
The key contribution (apart from providing benchmarking algorithms), was the detail in 
how to train and combine these algorithms in order to achieve better performance.

Haghpanahi and Borkholder (2014) used the deflation approach from Sameni (2008) 
(iterative subspace decomposition and Kalman filtering) in order to remove the MECG. 
They also used PCA on the four abdominal channels and selected the best FQRS time 
series out of the two approaches (deflation/PCA). The authors used kurtosis as a proxy 
for signal quality and in order to rank the residual signals from the deflation methods and 
combined a subset of these to infer the FQRS time series. 

Varanini et al (2014) removed the MECG from the abdominal signal using a PCA-based 
template subtraction algorithm and then applied ICA on the residuals. They, then selected 
one of the residuals based on: knowledge of typical FHR, mean of absolute RR first deriva-
tive and mean of absolute RR second derivative and the number of detected FQRS. This 
was a very similar approach to one of the techniques studied in Behar et al (2014c), where 
the authors concluded that using TSpca was better than all other template subtraction tech-
niques and subsequently applying ICA improved the result. 

Dessi et al (2014) used a template subtraction approach followed by an ICA step, FQRS 
detection and correction and channel selection. For performing the template subtraction 
step, the authors noted that performing the operation at a high sampling frequency (they 
upsampled the data to 8 kHz) was important to enable alignment of each MECG cycle 
with the template and thus achieving superior cancellation. In order to build the template 
MECG cycle the authors selected beats based on correlation thresholding to avoid includ-
ing abnormal beats in template.

Lipponen and Tarvainen (2014) used a PCA-based template subtraction approach in 
order to remove the MECG. They built the design matrix for the P and QRS and T waves 
separately and then applied PCA to identify the principal components. The most signifi-
cant eigenvectors were fitted back to individual wave epochs from the MECG in order to 
remove them. The approach for suppressing the MECG is similar to Varanini et al (2014) 
and Behar et al (2014c) although Lipponen and Tarvainen (2014) separated the MECG 
cycles into P, QRS and T-waves. 

Di Maria et al (2014) took a very standard PCA and template subtraction approach. the 
main focus of the paper was to explore picking the best principal component in order to iden-
tify the best MECG channel and the best FECG channel after performing MECG cancellation. 

Liu et al (2014) performed prefiltering, then MQRS detection, then template subtraction 
and finally FQRS detection on the residual. It is important to note that they used a quality 
index (sample entropy) in order to exclude bad quality channels, which is theoretically bet-
ter than performing FQRS detection on each channel and making the decision based on the 
regularity of the RR interval (as most entrants did). The authors also showed that by adjusting 
the MECG template to each cycle (in contrast to performing the simple construction with the 
template centered on the MQRS location) a performance improvement can be found. This 
second point was also illustrated in Behar et al (2014c), although Liu et al (2014) provided an 
interesting quantification of this phenomenon. 

Lukos̃evic∼ius and Marozas (2014) focused on the application of a QRS detector using 
an Echo state neural network (ESN), a data-driven statistical machine learning approach. 
The ESN is trained with the four residual signals (obtained using the MECG cancellation 
method from Martens et al (2007)) as channels of the input stream, and a probability of 
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QRS detection as the output. It should be noted that the authors did not focus on the extrac-
tion algorithms but on the QRS detector using multiple channels. 

Rodrigues (2014) employed a Wiener filter which took as the input, the three abominal 
channels with a number of coeffiecients (91) in order to filter out the MQRS from the fourth 
channel. The authors also used the MIT Abdominal and Direct Fetal Electrocardiogram 
Database in order to train their algorithm, which may have led to a bias in the results as this 
database was included in set-a, set-b (and possibly a few records in set-c). 

Christov et al (2014) described a template subtraction method, with the template 
length being heart rate dependant, followed by an enhancement method that combined the 
four abdominal channels. The combined lead was obtained using i) PCA, ii) RMS or iii) 
Hotelling T-squared. The final combined lead was obtained by taking a mean over these 
three methods and although FQRS detection was performed on this combined lead

The final article in this collection is by Almeida et al (2014), who take a wavelet approach 
to denoising and extracting the fetal ECG. Although a time-frequency analysis seems very 
promising, the large cross-over in the spectral domain between the maternal and fetal signals 
and the noise, means this approach appeared to be limited. However, the authors note that their 
method is highly dependent on the pre-processing methods employed. This notable remark is 
true for every method to a greater or lesser degree.

5. Summary and future directions

In summary, the Physionet/Computing in Cardiology Challenge 2013 provided several key 
additions to the field of non-invasive fetal monitoring. First, a modest (but significant) anno-
tated public database of NI-FECG was created, with a hidden validation set to allow objective 
future evaluation of algorithms. Second, a range of approaches have been compared, and open 
source code posted to allow scientific repeatability on the open access database. The existence 
of multiple independent algorithms allows us to explore the strengths and weaknesses of each 
approach, and exploit the combination of them to produce robust and accurate ‘committees of 
experts’ (e.g. see Behar et al (2014c)).

However, several limitations remain. A larger database is needed with more patients, longer 
recordings, more leads (including maternal ECGs) and abnormalities (such as arrhythmias, 
inter-uterine growth restriction, fetal acidosis, etc). Moreover, an annotated set of data which 
includes labels for ST segments and QT intervals under varying normal and abnormal condi-
tions is required. It is hoped that we can produce such a database in the near future to provide 
the entrants with the opportunity to identify if their algorithms are able to extract such features 
with no clinically significant distortion. Of course, in order to do so, it will be important to 
define and identify meaningful analogs of adult measures of abnormality (such as long QT and 
ST deviations) in the fetal population, adjusted for gestational age. This will become even more 
important as we attempt to apply NI-FECG extraction algorithms to earlier and earlier stages 
of pregnancy. The updated open source codes described in this special issue are available on 
PhysioNet at http://physionet.org/challenge/2013/sources/.
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