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Abstract

This paper proposes principles and methods for assessing the robustness of
ST segment analysers and algorithms. We describe an evaluation protocol,
procedures and performance measures suitable for assessing the robustness.
An ST analyser is robust if its performance is not critically dependent on the
variation of the noise content of input signals and on the choice of the database
used for testing, and if its analysis parameters are not critically tuned to the
database used for testing. The protocol to assess the robustness includes:
(1) a noise stress test addressing the aspect of variation of input signals;
(2) a bootstrap evaluation of algorithm performance addressing the aspect
of distribution of input signals and (3) a sensitivity analysis addressing the
aspect of variation of analyser’s architecture parameters. An ST analyser is
considered to be robust if the performance measurements obtained during these
procedures remain above the predefined critical performance boundaries. We
illustrate the use of the robustness protocol and robustness measures by a case
study in which we assessed the robustness of our Karhunen—Loeve transform
based ischaemic ST episode detection and quantification algorithm using the
European Society of Cardiology ST-T database.

Keywords: ST segment analyser, assessing robustness, critical performance
boundaries, noise stress test, bootstrap evaluation of performance, sensitivity
analysis

1. Introduction

Interest in the detection and quantification of transient ST segment episodes of
electrocardiogram (ECG) compatible with ischaemia during coronary or intensive care
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monitoring, during ambulatory monitoring and during stress testing, has grown in the last
few years. Assessing the properties of ST analysers as well as predicting their behaviour
in the real-world clinical environment is a difficult task. Performance assessment using
standard inputs (Jager et al 1991, ANSI/AAMI 1998a, 1998b, Jager 1998) can provide much
useful information about an ST analyser’s behaviour and its expected performance in the real
world. These performance measurements typically characterize how the standard inputs are
analysed in terms of assessing: (1) the accuracy of detecting transient ST segment episodes;
(2) the accuracy of detecting total ischaemic time and (3) the accuracy of measuring the ST
segment deviations. However, these tests do not include methods for assessing robustness
which is another important issue when evaluating a given ST analyser. While performance
measurements typically characterize how the standard inputs are analysed, it is important to
understand to what extent performance depends critically on the variation and choice of inputs.
An analyser whose performance varies little over a range of inputs may be said to be robust
with respect to the variation of input. It is often the case that robustness is achieved at the cost
of absolute performance. Robust methods are generally preferred, because they are less likely
to fail catastrophically than non-robust methods. There is no generally accepted methodology
for assessing the robustness of ST analysers and algorithms. Assessing the robustness of ST
analysers and algorithms should answer the following questions:

e To what extent performance depends critically on the variation of the noise content of
input signals, or, is an ST analyser robust with respect to the variation of input signals?

e To what extent performance depends critically on the choice of the database used for
testing, or, is an ST analyser robust with respect to the distribution of input signals?

e To what extent the analysis parameters are critically tuned to the database used for testing,
or, is an ST analyser robust with respect to the variation of its architecture parameters?

An analyser whose performance is not critically dependent on the variation of the noise
content of input signals is said to be robust with respect to the variation of input signals. An
analyser whose performance is not critically dependent on the choice of the database used for
testing is said to be robust with respect to the distribution of input signals. Similarly, if the
analysis parameters do not critically affect the performance as they are adjusted within some
range, an analyser is robust with respect to the variation of its architecture parameters.

This paper describes methods and a protocol for assessing the robustness of ST analysers
and algorithms according to these robustness questions. We illustrate the use of the protocol
through a case study in which we present a way to assess the robustness of our two-
channel Karhunen—Loeve transform (KLT) based transient ischaemic ST episode detection
and quantification algorithm (Jager et al 1998) using the European Society of Cardiology ST-T
Database (ESC DB) (Taddei et al 1992) as the test database.

2. Assessing robustness

The protocol to assess the robustness of ST analysers and algorithms includes the following
procedures:

1. Noise stress tests. Determine the critical (minimum) signal-to-noise ratio at which the
performance remains acceptable;

2. Bootstrap estimation of performance distributions. Determine if the performance is
critically dependent on the choice of the database used for testing;

3. Sensitivity analysis. Determine if the analysis parameters are critically tuned to the test
database.
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An ST analyser or algorithm is considered to be robust if the performance measurements
obtained during these procedures remain above the predefined critical performance
boundaries. To assess the robustness, we used common performance measures (Jager et al
1991, 1994, ANSI/AAMI 1998a, 1998b, Jager 1998). Relevant performance measures to
assess the ability of ST analyser to detect ST episodes were selected following: gross and
average ischaemic ST episode detection sensitivity, /E Se, and positive predictivity, IE + P,
and gross and average ischaemic ST duration sensitivity, /D Se, and positive predictivity,
ID + P. To assess the ability of ST analyser to quantify ST episodes, robust and informative
performance measures in the presence of outliers are needed: discrepant ST measurement
percentage, p(ioo .v), 1.€., the percentage of measurements for which the absolute difference
between the algorithm and reference ST deviation measurements differ by more than 100 1V,
and the value of error which 95% of measurements did not exceed, ewsg,). Since outliers are
likely to be rejected by the ST analyser from the input signals, the percentage of rejected noisy
heartbeats while still keeping analyser’s performance acceptable, p,, is another necessary
robust performance measure.

2.1. Noise stress test

Ability to reject noise and noise tolerance are important aspects of the behaviour of an ST
analyser or algorithm. Records of conventional ECG databases, in general, do not contain
enough noise necessary to assess the noise detection logic of a given analyser. Assessing the
analyser’s ability to reject a variety of severe noises more accurately predicts its performance
in the real-world clinical environment. During the development and evaluation of an ST
analyser, it is important to have a test of noise rejection, or a test assessing the ability to
analyse under difficult circumstances, which is quantitative and reproducible. A technique of
adding noise to ECG records is quantitative and reproducible and allows us to determine the
effects of noise on the analyser’s performance. Synthesized noise does not guarantee the same
characteristics (e.g., non-stationarity) as are observed in the clinical environment. The noise
stress test (Moody et al 1984) is a method that consists of adding real noise (electrode motion
artefacts, baseline wander and muscle noise) to ‘clean’ ECG signals. An implementation of
the noise stress test to severely stress the abilities of the analyser is important to evaluate
how the performance degrades in noisy data. The noise stress test has already been used to
assess the performance of arrhythmia detectors (Moody et al 1984).

The noise stress test database (NST DB) (Moody and Mark 1990) contains records with
real noises including baseline wander, electrode motion artefacts and muscle noise. The NST
DB is available at Physionet® Website (Moody et al 2000, Goldberger et al 2000). The noises
of the NST DB were obtained by the ‘electrode method’. A variety of noises was recorded
using ECG electrodes placed on the arms and thighs of subjects such that the ECG signal
was not recorded. The subjects were engaged in vigorous physical activity and the electrodes
were moved. Varied noises were created and recorded. After that noises were sorted into
three main categories: electrode motion artefacts, baseline wander and muscle noise. During
the noise stress test, the noises (noise signals) are added to clean ECG signals at different
signal-to-noise ratios. Signal-to-noise ratio is commonly expressed as

Py
SNR = lOlog<P c2>’ (1)

n

where Py is the power of the clean ECG signal, P, is the power of the noise signal and ¢
is an adjustable multiplicative constant to obtain the desired signal-to-noise ratio, given P

3 http://www.physionet.org/physiobank/database/nstdby.
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and P,, calculated separately for each pair of clean ECG signal and noise signal. The P is
defined as a function of QRS amplitude and the P, as the noise power measurement. The
P is defined as the square of the mean peak-to-peak amplitude divided by 8 of the first 300
normal QRS complexes given the ECG record, while the largest 5% and the smallest 5% of
the measurements are discarded. To determine the P,, the first 300 s of the noise record are
divided into 1 s chunks. The mean amplitude and the root mean squared difference for this
mean are computed for each 1 s segment, while the largest 5% and the smallest 5% of the
measurements are discarded again. The P, is then defined as a square of the mean of these
measurements.

Higher noise levels cause higher number of extracted heartbeats by a noise detection
procedure of an ST analyser, if the ST analyser extracts noisy heartbeats. The percentage
of excluded heartbeats while still maintaining the analyser’s performance acceptable, p,, is
largest for the most robust analyser. An important concept when characterizing the results
of a noise stress test is the lowest signal-to-noise ratio at which the analyser can still operate
acceptably, i.e., the critical performance threshold (Moody et al 1984), characterizing the
behaviour of an analyser for which noise has been added to its input at various signal-to-noise
ratios. The critical performance threshold is smallest for that analyser which is most robust
with respect to noise. The analyser is robust if its performance is still above the critical
performance boundaries and is therefore relatively insensitive to the variation of the noise
content of input signals.

2.2. Bootstrap estimation of performance distributions

In the domain of evaluation of ST analysers and algorithms, second-order gross and average
performance statistics are particularly relevant fo predicting real-world performance. Gross
statistics models behaviour of the analyser on a large number of events, while the average
statistics models behaviour of the analyser on a randomly chosen record. To best predict
the analyser’s performance in the real-world clinical environment, it is necessary to evaluate
it on the basis of records which were not used for development. Many ECG databases
(including the ESC DB) are not divided into development and test sets. They are a good
representation of the problem domains they represent. Consider a given database which is
the ‘best’ representation of the problem domain. A random division of such a database into
two subsets, and developing an analyser for each subset independently, would result in equal
architectures of these two analysers and their equal performance. This fact yields an idea
of ‘bootstrap’. During bootstraping, we can use, for each randomly selected set from the
original set, the same analyser architecture, i.e., that which was derived using the original
database. The bootstrap statistical procedure (Efron 1979) does not require any assumptions
about the distribution of the data to which it is applied, but does assume that the database used
for bootstrapping is a well-chosen representative subset of the population of examples for a
given problem domain. A bootstrap procedure has been successfully used for assessing the
robustness of performance statistics for arrhythmia detectors (Albrecht et al 1988).

The bootstrap method estimates the lowest performance which can be expected from a
certain database chosen at random (and with replacement) from the original database. Given
a set of observations {X;,i = 1, ..., L}, the bootstrap allows one to estimate the distribution
of any statistic ¥ (X1, X», ..., X1). The bootstrap procedure can be presented in four steps:

1. Choose at random and with replacements L elements from the original observations
{X;,i =1,..., L} to form a hypothetical set of observations {X7,i =1,..., L}.

2. Calculate the statistic W (X7, X5, ..., X}) using the hypothetical set of observations
{Xr,i=1,...,L}.
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Table 1. Performances of transient ST episode detectors developed and tested using the ESC DB.
A: Taddei et al (1995), B: Garcia et al (2000), C: Stadler et al (2001), D: Jager et al (1998), E:
Maglaveras et al (1998), F: Silipo and Marchesi (1998), [g]: gross, [a]: average, [E Se: ischaemic
ST episode sensitivity, /E + P: ischaemic ST episode positive predictivity, /D Se: ischaemic ST
duration sensitivity, /D + P: ischaemic ST duration positive predictivity.

Measure (%) A B C D E F

lg] IE Se 81 - 792 852 850 -
lg] IE +P 76 - 814 862 687 -
lg] ID Se - - - 758 730 -
lg] ID +P - - 780 695 -
la] IE Se 84 847 815 871 886 77
la] IE + P 81 861 825 877 784 86
[a] ID Se - 753 - 782 722 -
[a] ID +P - 682 - 741 615 -

3. Repeat steps 1 and 2 many times.
4. Use the estimates of W from step 2 to form the estimate of the distribution of W.

When the distribution is known, it is possible to estimate the lowest expected performance
(the 5% confidence limits) of the performance of the ST analyser, and thus to predict
its performance in the real world. The bootstrap cannot make the original database more
representative than the population from which it is taken. No estimation technique is capable
of removing bias in the original sampling procedure from the set of original observations.

The ST analyser is robust if its lowest expected performance is still above the critical
performance boundaries. The bootstrap is also useful for comparing robustness of different
performance statistics, as well as for comparing performance and robustness of different
analysers. The narrower the distribution for a statistic, the more robust the corresponding
performance statistic. Narrower distributions of performances as estimated by the bootstrap
(e.g., narrower intervals between the 5% confidence limits and the raw statistics, or, small
standard deviations of expected performances), indicate a more robust analyser. Such
an analyser yields nearly the same performance given very different circumstances (the
distribution of input signals) and is therefore relatively insensitive to the choice of the database
used for testing.

2.3. Sensitivity analysis

Sensitivity analysis addresses the question of how performance varies given small changes
in analysis parameters. During the development of an ST analyser or algorithm, optimal
detection thresholds were typically determined using the analyser performance characteristic
curves by summarizing the relationship between sensitivity and positive predictivity of the ST
episode and ST duration detecting by varying detection thresholds continuously between their
possible largest and smallest values. Variations of these optimal parameters from their optimal
values lead to a drop in the performance. The performance of a robust analyser should not
deteriorate below acceptable levels if such changes are made. If this does happen, it suggests
that the design of the algorithm may be tuned to the database used for testing.

3. Results: case study

Table 1 comparatively summarizes the performances of those transient ST episode
detectors which were developed and tested on the ESC DB using its original reference
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Table 2. Performance of the KLT-based ST episode detection and quantification algorithm obtained
during the noise stress test in a variant when noise was added prior to ARISTOTLE’s analysis and
using the ESC DB. Performances that do not meet the goals (critical performance boundaries) are
boxed. Goal: performance goals (critical performance boundaries), SNR: signal-to-noise ratio,
Raw: raw statistics, p(jo0.v): discrepant ST measurement percentage, e9s9): value of error which
95% of measurements did not exceed, p,: percentage of rejected noisy heartbeats.

SNR
Measure Goal 6dB 12dB 18 dB 24dB  30dB 36dB Raw

[g] IE Se (%) >80 78.0 83.2 85.6 84.0 83.6 83.6 85.2

[elIE+P (%) >80 |495| [590] [770] 827 844 857 862
[g]IDSe(%) ~ >70 740 719 753 749 744 745 758

[elID+P (%) >70 703 761 778 784 780

[a] IE Se (%) >80 83.4 84.0 86.3 85.5 85.1 85.4 87.1

[IE+P (%) >80 [532] [e72] [79.1] 846 860 873 877
[a]IDSe (%) ~ >70 762 747 T4 765 762 164 182

[D+P@%) >70 [435] [s62] [es8] 717 736 750 741

[e] paoopy) (%) <20 [484] [332] [231] 160 125 114 9.8
[e] eoswy (V) <200 |795] [365] |205] 140 135 125 115

] pn (%) <50 326 212 163 144 137

annotations. These systems incorporate time-domain analysis (Taddei er al 1995, Garcia et al
2000, Stadler et al 2001), KLT approach (Jager et al 1998), neural network approach
(Maglaveras et al 1998) and a combination of the KLT and neural network approach
(Silipo and Marchesi 1998). The ESC DB contains 368 ischaemic ST episodes as annotated
in each single ECG lead, or 250 lead-independent ischaemic ST episodes if the episodes
are combined in the sense of logical OR function. The published sensitivities and positive
predictivities in detecting transient ischaemic ST episodes (/E Se and IE + P) of these systems
are about 80% or 85%.

We demonstrate the use of the robustness protocol by assessing the robustness of our KLT-
based two-channel ischaemic ST episode detection and quantification algorithm (Jager et al
1998) using selected performance measures and the ESC DB as the test database. Since
no performance requirements have been previously published, we set critical performance
boundaries (goals) based on performance measurements obtained from a variety of current
analysis algorithms and from our KLT-based analysis algorithm (see the second column in
table 2). These levels of performance are possible but not trivial to achieve, and in our
estimation represent the standard of performance to be expected of clinically useful ST analysis
algorithms at present.

3.1. KLT-based ST episode detection and quantification algorithm

Next, we briefly describe the KLT-based ST episode detection and quantification algorithm.
The algorithm was devised as a post-processor to the ARISTOTLE arrhythmia detector
(Moody and Mark 1982) and operates simultaneously on two ECG leads. The algorithm
is composed of preprocessing procedures, noise detection procedure, and feature-vector
trajectory recognition procedures to detect transient ST segment episodes.
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On the basis of ArisToTLE’s fiducial point FP(j), where j is the heartbeat number,
the algorithm derives a five-dimensional KLT feature vector for the ST segment, s(j),
and another five-dimensional feature vector for the QRS complex, q(j), for each single
iso-electric corrected heartbeat. The noise detection procedure and the feature-vector
trajectory recognition procedures are fully implemented in the KLT feature space and use
the Mahalanobis distance measure, dy, between feature vectors, where N = 5 is the
dimensionality of feature vectors. Each next heartbeat is considered noisy if the normalized
residual error for the ST segment or for the QRS complex exceeds certain percentage, or if
the ST segment or QRS complex feature vector differs sufficiently from those of the past few
heartbeats. Sequences of remaining feature vectors are resampled and further smoothed to
form equidistant time series of ST segment and QRS complex feature vectors, s(k) and q(k),
where k is the sample number.

The feature-vector trajectory recognition procedures incorporate: (1) correction of the
reference ST segment level to account for the slow ST level drift; (2) detection of significant
axis shifts due to postural changes and (3) detection of transient ST segment episodes. The
correction of the reference ST segment level is performed by updating the mean reference ST
segment feature vector of ‘normal’ ST segments after each new ST segment feature vector.
Using the second-order distance function, d?, between ST segment feature vectors, the new
mean ST segment feature vector is updated as the exponentially weighted sum if the new
ST segment feature vector is ‘close’ to the mean feature vector. Significant axis shifts are
detected by searching the first-order distance function, dy, of the time series of the ST segment
and of QRS complex feature vectors for simultaneous significant ‘step’ changes using low-
pass first-order differentiation which have to be preceded and followed by ‘flat’ intervals.
ST episodes are detected by sequentially classifying samples of the first-order ST segment
distance function after a correction of the reference ST segment level, denoted by Cy (k), as
normal and deviating ones. Consecutive samples of the Cy (k) which are ‘far’ from the class
of normal ST segments form ST episodes. Actual architecture of the ST episode detection
procedure is more complex. Samples of the Cy (k) are actually classified according to two
decision thresholds, i.e., lower and upper decision thresholds, Ly (k) and Uy (k). These two
thresholds are equivalent to 50 ©V and 100 ©V decision thresholds used by human expert
annotators of the ESC DB to annotate transient ischaemic ST episodes in the time series of
time-domain ST segment level deviation measurements. Due to the non-stationary nature of
the Cy (k), the Ly (k) and Uy (k) are adaptive. The two decision thresholds are adaptive only
within a predefined region, i.e., within a ‘guard zone’, of which center, Ay, is also adaptive,
and is defined by its initial centre, Ay, and its lower bound, %ACON.

For details of the architecture of the KLT-based ST episode detection and quantification
algorithm see Jager (1994), Jager et al (1998).

3.2. Is the algorithm robust with respect to the variation of input signals?

For the noise stress test procedure, noise from the NST DB was added to all the records of
the ESC DB. The first 5 min of the ECG signals were left ‘clean’ for each record, to give
the algorithm an opportunity to measure the reference baseline ST segment deviation levels
accurately and to learn successfully. Following this period, noise was added throughout the
entire records. We wanted to simulate real circumstances so all three kinds of noise: baseline
wander, electrode motion and muscle noise were represented equally. Records to which a
given type of noise was added were chosen at random. Signal-to-noise ratios were chosen
from 36 dB down to 6 dB with a step of 6 dB. An example of input ECG signal of a record of
the ESC DB to which muscle noise artefacts were added at different signal-to-noise ratios is



636 F Jager et al
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v4 ‘ } | v4

Figure 1. An example of input ECG signal during extrema of ischaemic ST segment episode
(record e0107 of the ESC DB) contaminated with muscle noise artefacts at signal-to-noise ratios
of 24 dB, 18 dB and 6 dB. Start time: 18:21 mm:ss. End time: 18:41 mm:ss.

shown in figure 1. The noise stress test procedure was performed in two variants. In the first
variant, noise was added to signals prior to the ARriSTOTLE arrhythmia detector analysis, while
in the second variant, noise was added to signals immediately after the ARISTOTLE analysis.
Using both variants of test permits us to determine to what extent the performance of ST
analysis algorithm may be limited by that of the arrhythmia detector in the presence of noise.
The results of the noise stress test for both variants are shown in figure 2. The results suggest
that the ARISTOTLE operates accurately and does not influence significantly the performance of
the ST segment analysis at all, until SNR = 12 dB and 6 dB. The figure shows stable gross
and average /E Se and ID Se, even for SNR = 6 dB. Gross and average /E + P and ID + P
stay above the critical performance boundaries until SNR = 24 dB. This signal-to-noise ratio
is the critical performance threshold. Performance statistics obtained during the first variant
of the noise stress test in comparison with critical performance boundaries are summarized in
table 2. Discrepant ST measurement percentage, p(ioouv), and the value of error which 95%
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Influence of noise stress test
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Figure 2. Performance of the KLT-based ST episode detection algorithm obtained during the noise
stress test using the ESC DB. Bold lines: a variant when noise was added prior to ARISTOTLE’S
analysis. Thin lines: a variant when noise was added after ARISTOTLE’s analysis.

of measurements did not exceed, e(9s59,, both increase as the noise level increases. Reasonably
low p(i00,.v) and e9sq,) appear for 36 dB, 30 dB and 24 dB. The percentage of extracted noisy
heartbeats, p,, at the critical performance threshold (24 dB) is approximately 21%. These
results confirm the performance of the KLT-based algorithm above the critical performance
boundaries with respect to the variation of input signals and thus confirms the robustness of
the algorithm.

3.3. Is the algorithm robust with respect to the distribution of input signals?

Bootstrap distributions on the basis of 10 000 bootstrap trials of the performance of the KLT-
based algorithm using the ESC DB are shown in figure 3. Distributions of gross ID Se
and ID + P are wider, and thus tend to be less robust performance measures than average
ID Se and ID + P. Significant errors in long ST episodes had a negative influence on gross
statistics, but not on the corresponding average statistics. A small number of relatively long
but poorly detected ST episodes (poorly overlapped by analyser-annotated ischaemia) resulted
in very low gross ID Se. Similarly, a small number of very long detections belonging to a
relatively short ischaemic ST episodes resulted in very low gross ID + P. Table 3 shows the
performance statistics obtained when using the bootstrap estimation of performance statistics
in comparison with critical performance boundaries. The KLT-based algorithm seems to show
good robustness. Its lowest expected performances (the 5% confidence limits) are close to
(gross ID Se and average ID + P) or exceed the critical performance requirements. Differences
between the raw statistics and the 5% confidence limits of the performance distributions are
from 4.6% to 6.2%, while standard deviations of the performance statistics are from 2.8% to
3.5%. These figures confirm relatively narrow distributions with respect to the distribution of
input signals and thus confirms the robustness of the algorithm.
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Figure 3. Bootstrap distributions (10000 trials) of the aggregate performance statistics of the
KLT-based ST episode detection algorithm using the ESC DB.

3.4. Is the algorithm robust with respect to the variation of its architecture parameters?

Sensitivity analysis was performed by modifying the most important architecture parameters
of the algorithm: (1) the dimensionality, N, of the ST segment, s(k), and QRS complex, q(k),
KLT feature vectors after the noise detection procedure, where k is the feature-vector sample
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Table 3. Performance of the KLT-based ST episode detection algorithm obtained during the
bootstrap estimation of performance distribution (10 000 bootstrap trials) and using the ESC DB.
The bracketed figures are 5% confidence limits. Performances that do not meet the goals (critical
performance boundaries) are boxed. (5%): 5% confidence limits of the performance distribution
(lowest expected performance), AP: difference between raw performance and 5% confidence
limits, Mean: mean of the distribution, SD: standard deviation of the distribution.

Measure (%) Goal (5%) AP Mean SD Raw

[g] IE Se >80  (80.6) 4.6 852 28 852
[g]IE+ P >80  (81.1) 5.1 862 3.0 862
[g] ID Se >70 (69.6) | 6.2 757 35 758
[g]ID + P >70  (72.5) 5.5 719 32 780
[a] IE Se >80 (82.2) 49 87.1 29 8&7.1
[a] IE+ P >80  (82.9) 4.8 87.6 28 877
[a] ID Se >70 (73.2) 5.0 782 3.0 782

[a] ID + P >70 (69.3)| 4.8 74.1 28 74.1

number; (2) feature-space boundaries and decision thresholds of noise detection and feature-
vector trajectory recognition procedures and (3) by randomly perturbing the exact position of
the ARISTOTLE’s heartbeat fiducial point, FP(j).

When studying the influence of modifying the dimensionality of feature vectors, we
retained the original noise detection procedure incorporating five KLT coefficients. Thus we
separated the noise detection and pattern recognition tasks. We wanted to study the influence
of feature-vector dimensionality on the quality of feature representation and subsequently on
those parts of the algorithm performing the pattern recognition task. We varied the number of
KLT coefficients, N, from 2 to 8. The feature-space boundaries and decision thresholds of the
trajectory-recognition procedures of the algorithm were in each case recalculated according
to the feature space dimensionality ratio. Figure 4 shows the performance obtained when the
dimensionality of feature vectors, N, is a parameter. Performance varies significantly, but the
variations were smooth. The best performance is obtained when using five KLT coefficients.
More significant differences in performance appear when using seven or eight KLT coefficients.
Table 4 summarizes the performance statistics obtained during sensitivity analysis. Results
are consistent. The performance statistics remained above the critical performance boundaries
when the dimensionality of feature vectors, N, varied from 4 to 6.

Studying the influence of modifying the most important feature-space boundaries and
decision thresholds of the KLT-based algorithm involved architecture parameters of the
procedures for noise detection, for correcting the reference ST segment level, for detecting
significant axis shifts and for detecting ST episodes. Changing these parameters (while
keeping the dimensionality of feature vectors unchanged, N = 5) one-by-one up to =10%
did not influence the performance of the algorithm significantly. Results are summarized in
table 4. The most sensitive parameter is the initial centre of the guard zone, Acw, .., a
parameter of the algorithm responsible for classifying ST segment feature vectors as normal
and deviating ones. Changing the decision threshold Ay by —10% resulted, in the worst
case, in a change of gross IE + P by —6.8% from raw statistics and a change of gross ID + P
by —6.6%. Changing the decision threshold Ay for +10% resulted, in the worst case, in a
change of gross /E Se by —8.0%, and of gross ID Se by —8.5%. Otherwise, the performance
remained strictly above the critical performance boundaries. Other architecture parameters
are less sensitive. Next sensitive parameter is lower decision threshold, %ACON. A change of
this parameter for +10% leads to a drop in the performance for less than 4% (gross ID + P).
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Figure 4. Performance of the KLT-based ST episode detection algorithm using the ESC DB for
the modified dimensionality, N, of ST segment and QRS complex feature vectors.

Table 4. Performance of the KLT-based ST episode detection algorithm obtained during the
sensitivity analysis and using the ESC DB. Performances that do not meet the goals (critical
performance boundaries) are boxed. N: dimensionality of feature vectors, Acyy: initial centre of
the ‘guard zone’, [+n]: interval to generate uniformly distributed fiducial point jitter.

N Acoy [n]

Measure (%) Goal 4 6 —10% +10% n =2 Raw

[g] IE Se >80 840 832 868 848 852

[elIE+P >80 817 846 88.3 86.2

[g] ID Se >70 748 737 760 722 758
[g][D+P 70 734 765 714 80.6 78.0

[a] IE Se >80 86.2 86.1 87.7 81.0 875 87.1
[a] IE +P >80 85.2 86.1 83.5 89.3 827 817
[a] ID Se >70 77.8 76.7 778 72.1 71.8 782

[a] ID +P >70 727 733  70.7 71.0 70.8  74.1

To study the influence of fiducial point jitter, simulated random, uniformly distributed
jitter in the interval [—n,n],n = 0, ..., 8, original signal samples around the ARISTOTLE’S
fiducial point, FP(j), was introduced. The jitter was introduced immediately before applying
the KLT basis functions to pattern vectors. Such a situation may be expected as a result of
inaccurate time alignment of the pattern vector or of a suboptimal procedure for determining
the position of the fiducial point. Other sources of jitter may be expected due to measurement
noise in the signal or randomly varying waveforms. Fiducial point jitter in the pattern vectors
affects the representational power and the classification performance. The study showed that
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sensitivity and positive predictivity steadily decrease as the jitter, #, increases. Results of the
study are summarized in table 4. The performance of the KLT-based algorithm remained close
to (gross /E + P and ID + P) and above the critical performance boundaries when introducing
a jitter in the window of 2 original signal samples (£8 ms) around the fiducial point. A
significant drop in performance occurs at n = 4.

These measurements confirm that architecture parameters do not critically affect the
performance as they are changed within some range around their optimal values and suggest
that the KLT-based algorithm is robust with respect to the variation of its architecture
parameters.

4. Discussion and conclusions

Robustness of ST analysers is an important evaluation question and need to be assessed in the
light of various procedures. In this paper, we presented principles and methods for assessing
the robustness of ST episode detection and quantification analysers and algorithms. We defined
an evaluation protocol, performance measures and procedures to assess the robustness. In the
case study, we demonstrated how robustness of an ST analyser can be quantitatively evaluated
using a standard database. Other systems to detect ischaemic ST episodes (Taddei et al
1995, Garcia et al 2000, Stadler et al 2001, Maglaveras et al 1998, Silipo and Marchesi 1998)
have been evaluated in terms of performance, but not in terms of robustness, therefore their
robustness cannot be compared.

The KLT-based ischaemic ST episode detection and quantification algorithm showed
good noise immunity. The algorithm is not critically dependent on the variation of the
noise content of input signals. Adding noises to input signals in two variants, prior to and
after ARISTOTLE’s analysis, tested ARISTOLE’s stability and immunity to noise and exposed
its influence to overall robustness. ARISTOTLE has practically no influence on performance.
Performance characteristics are almost equal in both variants.

Bootstrap analysis showed that the performance of the KLT-based algorithm is not
critically dependent on the choice of database used for testing. Relatively narrow distributions
of the statistics suggest that the algorithm is marginally robust. Apart from comparing the
robustness of different algorithms, the bootstrap is also useful for comparing the robustness of
different performance statistics. Distributions of average performance statistics are narrower
than those of gross statistics. Thus, the average statistics appear to be more robust estimates
of the performance of the algorithm than the corresponding gross statistics, particularly for
ischaemic ST duration statistics. Gross ischaemic ST duration statistics are extraordinarily
sensitive to single errors and thus less robust estimators of performance than average statistics.
Significant errors in a small number of long episodes have a disproportionately negative
influence on gross statistics, but not on the corresponding average statistics.

Sensitivity analysis proved that the algorithm is not critically tuned to the database used for
testing (ESC DB). The optimal choice for the dimensionality of feature vectors to distinguish
between noisy and non-noisy events in the domain of ST episode detection during ambulatory
ECG monitoring has been estimated previously (Jager 1994, Jager et al 1998). The five KLT
coefficients for the ST segment and the five for QRS complex feature vectors were estimated as
the optimal (sufficient and necessary) choice for this task. When changing the dimensionality
of feature vectors in this study, we retained the dimensionality of feature vectors (five) for
the noise detection procedure. Besides assessing the robustness, the sensitivity analysis
allowed us to assess the influence of the modified feature-vector dimensionality on the quality
of ST segment and QRS complex morphology-feature representation, and subsequently on
those parts of the algorithm performing pattern recognition. The present study suggests that
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a dimensionality of five is also the optimal choice for feature representation and pattern
recognition part of the KLT-based algorithm. Furthermore, sensitivity analysis showed that
changing feature-space boundaries and decision thresholds of the algorithm does not influence
the performance of the algorithm significantly. The influence of fiducial point jitter was not
critical.

Primary motivation for including sensitivity analysis into the robustness protocol was
to make an objective comparison of ST analysers possible. Knowing which architecture
parameters of a given ST analyser are relevant to be modified in order to ‘force’ the analyser’s
sensitivity to the same value as of the other ST analysers, and then comparing their positive
predictivities, allows direct comparison of the performance of the analysers.

The evaluation protocol, procedures and performance measures to assess the robustness
of ST analysers and algorithms appear to be practical, useful and informative. We conclude
that authors would need to publish data that reveal how fragile their ST analyser might be.
Adopting the robustness protocol and measures together with a standard database across groups
of investigators makes comparison of robustness of ST analysers and algorithms possible. We
finally conclude that comparable robustness estimates should be made for many other computer
applications in medicine.

References

Albrecht P, Moody G B and Mark R G 1988 Use of the ‘bootstrap’ to assess the robustness of the performance
statistics of an arrhythmia detector J. Ambulatory Monit. 1 171-6

Association of the Advancement of Medical Instrumentation/American National Standard Institute 1998a Ambulatory
electrocardiographs ANSI/AAMI EC38 Arlington, VA, USA

Association of the Advancement of Medical Instrumentation/American National Standard Institute 1998b Testing
and reporting performance results of cardiac rhythm and ST segment measurement algorithms ANSI/AAMI
EC57 Arlington, VA, USA

Efron B 1979 Bootstrap methods: another look at the jackknife Ann. Stat. 7 1-26

Garcia J, Sornmo L, Olmos S and Laguna P 2000 Automatic detection of ST-T complex changes on the ECG using
filtered RMS difference series: application to ambulatory ischemia monitoring /EEE Trans. Biomed. Eng. 47
1195-201

Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K
and Stanley H E 2000 PhysioBank, PhysioToolkit, and PhysioNet components of a new research resource for
complex physiologic signals Circulation 101 €215-20

Jager F 1994 Automated detection of transient ST-segment changes during ambulatory ECG-monitoring, PhD Thesis,
University of Ljubljana, Faculty of Electrical and Computer Engineering, Ljubljana, Slovenia

Jager F 1998 Guidelines for assessing performance of ST analysers J. Med. Eng. Techn. 22 25-30

Jager F, Moody G B, Divjak S and Mark R G 1994 Assessing the robustness of algorithms for detecting transient
ischemic ST segment changes Comput. Cardiol. 229-32

Jager F, Moody G B and Mark R G 1998 Detection of transient ST segment episodes during ambulatory ECG
monitoring Comput. Biomed. Res. 31 305-22

Jager F, Moody G B, Taddei A and Mark R G 1991 Performance measures for algorithms to detect transient ischemic
ST segment changes Comput. Cardiol. 369-72

Maglaveras N, Stamkopoulos T, Pappas C and Strintzis M G 1998 An adaptive backpropagation neural network
for real-time ischemia episodes detection: development and performance analysis using the European ST-T
database IEEE Trans. Biomed. Eng. 45 805-13

Moody G B and Mark R G 1982 Development and evaluation of a 2-lead ECG analysis program Comput. Cardiol.
39-44

Moody G B and Mark R G 1990 The MIT-BIH arrhythmia database on CD-ROM and software for use with it Comput.
Cardiol. 185-8

Moody G B, Mark R G and Goldberger A L 2000 A research resource for studies of complex physiologic and
biomedical signals Comput. Cardiol. 179-84

Moody G B, Muldrow W K and Mark R G 1984 A noise stress test for arrhythmia detectors Comput. Cardiol. 381-4



Protocol to assess robustness of ST analysers: a case study 643

Silipo R and Marchesi C 1998 Artificial neural networks for automatic ECG analysis /EEE Trans. Signal Proc. 46
1417-25

Stadler R W, Lu S N, Nelson S D and Stylos L 2001 A real-time ST segment monitoring algorithm for implantable
devices J. Electrocardiol. 34 119-26

Taddei A, Costantino G, Silipo R, Emdin M and Marchesi C 1995 A system for the detection of ischemic episodes in
ambulatory ECG Comput. Cardiol. 705-8

Taddei A, Distance G, Emdin M, Pisani P, Moody G B, Zeelenberg C and Marchesi C 1992 The european ST-T
database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiology
Eur. Heart J. 13 1164-72



